

Request Information

Permalink

## Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide

Tech ID: 25741 / UC Case 2016-324-0

### CONTACT

Pasquale S. Ferrari  
ferrari@tia.ucsb.edu  
tel: .

### BACKGROUND

The development of light emitting devices (LEDs) with optimized materials is essential to increase the overall efficiency of the myriad commercial applications of the LED. Wafer bonding permits extension of the design parameters of these devices by allowing the formation of heterojunctions that are not possible through conventional deposition schemes. Bonding to transparent conductive materials leads to higher efficiency due to enhanced light extraction.

### INVENTORS

- ▶ DenBaars, Steven P.
- ▶ Mughal, Asad J.
- ▶ Speck, James S.
- ▶ Young, Erin C.

### DESCRIPTION

Researchers at the University of California, Santa Barbara have developed a method for bonding transparent conductive oxides on III-nitride materials using wafer bonding techniques. Light emitting devices (LEDs) can be processed using this technique which yields higher efficiency devices than traditional methods and allows for greater design options for fabricating devices such as fully transparent tunnel junction-based III-nitride-based LEDs.

### OTHER INFORMATION

#### KEYWORDS

LED, tunnel junction, wafer bonded, conductive oxide, III-nitride, indfeat, indenergy

### ADVANTAGES

- ▶ Increased light extraction efficiency
- ▶ Greater design options for fabricating devices

### CATEGORIZED AS

- ▶ Fully transparent tunnel junction-based LEDs
- ▶ LEDs

- ▶ Energy
- ▶ Lighting
- ▶ Other
- ▶ Engineering
- ▶ Engineering
- ▶ Semiconductors
- ▶ Design and Fabrication

### APPLICATIONS

- ▶ Fully transparent tunnel junction-based LEDs
- ▶ LEDs

### RELATED CASES

2016-324-0

### PATENT STATUS

| Country                  | Type          | Number     | Dated      | Case     |
|--------------------------|---------------|------------|------------|----------|
| United States Of America | Issued Patent | 11,411,137 | 08/09/2022 | 2016-324 |

### RELATED TECHNOLOGIES

- ▶ III-Nitride Tunnel Junction LED with High Wall Plug Efficiency

### ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- ▶ Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
- ▶ Methods to Produce and Recycle Substates for III-Nitride Materials with Electrochemical Etching
- ▶ Improved Reliability & Enhanced Performance of III-Nitride Tunnel Junction Optoelectronic Devices
- ▶ (In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- ▶ Thermally Stable, Laser-Driven White Lighting Device
- ▶ III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- ▶ A Method To Lift-Off Nitride Materials With Electrochemical Etch
- ▶ High-Intensity Solid State White Laser Diode
- ▶ Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- ▶ A Wafer-Scale, Low Defect Density Strain Relaxed Template for III-Nitride-Based High Efficiency and High-Power Devices

**University of California, Santa Barbara**  
**Office of Technology & Industry Alliances**  
342 Lagoon Road, Santa Barbara, CA 93106-2055 |  
<https://www.tia.ucsb.edu>  
Tel: 805-893-2073 | Fax: 805.893.5236 | [padilla@tia.ucsb.edu](mailto:padilla@tia.ucsb.edu)



© 2016 - 2022, The Regents of the University of California  
[Terms of use](#)  
[Privacy Notice](#)