

A New Methodology for 3D Nanoprinting

Tech ID: 25727 / UC Case 2016-379-0

ABSTRACT

Researchers at the University of California, Davis have discovered a novel protocol to enable 3D printing with nanometer precision in all three dimensions using polyelectrolyte (PE) inks and atomic force microscopy.

FULL DESCRIPTION

3D printing has recently experienced many revolutionary breakthroughs in the scientific community due to its capability to produce 3D objects by design. This technology shows great promise for the potential for objects of almost any shape or geometry to be synthesized on demand. The fabrication of devices in the nanoscale region is currently the next target for researchers in many industries such as biomedical and electrical engineering.

Researchers at the University of California, Davis have discovered a novel protocol to enable 3D printing with nanometer precision in all three dimensions using polyelectrolyte (PE) inks and atomic force microscopy. This work significantly advances the development of 3D nanoprinting technology, and lays a foundation for 3D nanoprinting of functional materials through choice of PE ink materials, such as proteins, nanoparticles, dyes, and DNA.

APPLICATIONS

- ► Fabrication of nanoscale devices
- Artificial organs
- Quantum computing devices
- ▶ New materials for controlling cellular function
- ► Tissue engineering
- Stem cell-based regenerative medicine and therapy

FEATURES/BENEFITS

- Nanometer precision
- Incorporation of a wide range of functional materials
- Support of 3D custom design
- Remarkably stable products
- Practical throughput for both research and industry

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	10,751,933	08/25/2020	2016-379

CONTACT

Andrew M. Van Court amvancourt@ucdavis.edu tel: .

INVENTORS

- Liu, Gang-yu
- Swartz, Logan A.
- Zhao, Jianli

OTHER INFORMATION

KEYWORDS 3D nanoprinting, nanostructure, scanning probe microscopy, atomic force microscopy, Scanning probe lithography

CATEGORIZED AS

Materials &

Chemicals

- Nanomaterials
- Nanotechnology
 - Materials
 - NanoBio
 - ▶ Other
- Research Tools
 - Other
- Semiconductors

Design and

Fabrication

Materials

RELATED CASES

2016-379-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ► Atomic Force Microscopy-based Platform for Investigating Single Cell Mechanics
- Generic Method for Controlled Assembly of Molecules

University of California, Davis	Tel:	\odot 2016 - 2020, The Regents of t	the University of
Technology Transfer Office	530.754.8649		California
1 Shields Avenue, Mrak Hall 4th Floor,	techtransfer@ucdavis.edu		Terms of use
Davis,CA 95616	https://research.ucdavis.edu/technology-		Privacy Notice
	transfer/		
	Fax:		
	530.754.7620		