Improved Anisotropic Strain Control in Semipolar Nitride Devices
Tech ID: 25606 / UC Case 2009-743-0

BRIEF DESCRIPTION
A method to control the anisotrophy of strain in semipolar nitride-based active layers of optoelectronic devices while maintaining high device performance and efficiency.

BACKGROUND
Nitride-based devices are typically grown coherently because dislocations can cause poor device performance. The presence of strain in quantum wells (QWs) can modulate the band structure of QWs (polarization of spontaneous emission and gain). Generally, strain in semipolar nitride epitaxial layers is anisotropic due to the different lattice parameters. This strain-anisotropy is automatically determined by the difference of lattice constant between a considered epitaxial layer and the substrate on which the considered layer is coherently grown. Therefore, techniques are needed to control the anisotropy of strain in QWs.

DESCRIPTION
UC Santa Barbara researchers have created a method to control the anisotrophy of strain in semipolar nitride-based active layers of optoelectronic devices while maintaining high device performance and efficiency. Using this method, misfit dislocations may be restricted to regions located far from device layers.

ADVANTAGES
▶ Controlled anisotropic strain
▶ High efficiency
▶ Improved device performance
▶ Increased device yield
▶ Reduction of dislocations in active devices

APPLICATIONS
▶ LEDs
▶ Laser diodes (LDs)

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,866,126</td>
<td>10/21/2014</td>
<td>2009-743</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,481,991</td>
<td>07/09/2013</td>
<td>2009-743</td>
</tr>
</tbody>
</table>

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
▶ Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
▶ High Efficiency LED with Optimized Photonic Crystal Extractor
▶ Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
▶ Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
▶ Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
▶ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
▶ Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
▶ Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
▶ Defect Reduction in GaN films using in-situ SiNx Nanomask
Improved Manufacturing of Semiconductor Lasers
- LED Device Structures with Minimized Light Re-Absorption
- Growth of Planar Semi-Polar Gallium Nitride
- Nonpolar (Al, B, In, Ga)N Quantum Well Design
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Integration And Mass Transfer Of Microleds
- Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
- Wafer Bonding for Embedding Active Regions with Relaxed Nanofeatures
- Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD