

INNOVATIONACCESS AVAILABLE TECHNOLOGIES CONTACT US

**Request Information** 

Permalink

# Novel IGF2 Signaling Inhibition

Tech ID: 24813 / UC Case 2015-307-0

### **ABSTRACT**

Researchers at the University of California, Davis have developed novel proteins for the inhibition of IGF2 signaling without adversely affecting glucose metabolism.

#### **FULL DESCRIPTION**

The insulin receptor (IR) exists in two isoforms: the 'B' isoform (IR-B) which only binds to insulin and is a critical regulator of glucose metabolism, and the 'A' isoform (IR-A) which recognizes both insulin and insulin-like growth factor-2 (IGF2). Aberrant IGF2 has been implicated in many cancers, and binds insulin-like growth factor-1 receptor (IGF1R) in addition to IR-A. In cells with a high IR-A/IGF1R ratio, production of IGF2 stimulates unregulated cell growth.

IR-A is a therapeutic target in cancer, and efforts have been made to produce inhibitors of IGF2 signaling that selectively target IR-A, as inhibitors of IR-B are expected to adversely affect glucose metabolism. Unfortunately, currently available kinase inhibitors do not distinguish IGF1R, IR-A, and IR-B. Additionally, available anti-IGF1R antibodies do not block IR-A or IR-B.

Researchers at the University of California, Davis have developed novel proteins for inhibiting IGF2 signaling. These inhibitors modulate IGF1R and IR-A activity without affecting IR-B activity. These proteins are expected to serve as both drug discovery tools and therapeutic agents to aid in the treatment of a number of hyperproliferative and inflammatory diseases.

## **APPLICATIONS**

- ▶ Discovery of compounds for suppression of IGF2 signaling
- ► Treatment of:
  - ▶ Hyperproliferative diseases
  - Cancer
    - ▶ Melanoma
    - ▶ Neuroblastoma
    - ► Breast cancer
    - ▶ Colon cancer
    - ▶ Ovarian cancer
    - ▶ Cervical cancer
  - ▶ Inflammatory diseases
    - Arthropathies
    - ► Rheumatoid arthritis
    - Osteoarthritis
- ▶ Autoimmune diseases
  - ► Rheumatoid spondylitis
  - ► Autoimmune uveitis
  - ► Multiple sclerosis
  - ► Autoimmune diabetes
- ▶ Diseases involving hypervasularization
- ► Fibrotic diseases

### **FEATURES/BENEFITS**

▶ Suppression of IGF1R and IR-A signaling by IGF2, without affecting IR-B signaling

#### CONTACT

Prabakaran Soundararajan psoundararajan@ucdavis.edu tel: .



### **INVENTORS**

- Prieto, Dora C.
- ► Takada, Yoko K.
- ► Takada, Yoshikazu

# OTHER INFORMATION

### **KEYWORDS**

IGF2, inhibitors, cancer,

oncology, isoform,

theraphy, drug discovery,

autoimmune,

hypervasularization,

fibrosis

# CATEGORIZED AS

## Medical

Disease:

Autoimmune and

Inflammation

▶ Disease: Cancer

### ► Research Tools

Expression

System

Screening Assays

### **RELATED CASES**

2015-307-0

### ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Suppression of sPLA2-Integrin Binding for Treating an Inflammatory Condition or Suppressing Cell Proliferation
- ▶ Novel Insight into Inhibiting IGF1 Signaling
- ► Tumor-Suppressing Growth Factor Decoy
- Novel Fibroblast Growth Factor 1-Derived Peptides for Therapy and Drug Discovery
- ▶ Modulating MD-2-Integrin Interaction for Sepsis Treatment
- ▶ Integrin Binding to P-Selectin as a Treatment for Cancer and Inflammation

University of California, Davis
InnovationAccess
1850 Research Park Drive, Suite 100, ,
Davis,CA 95618

Tel: 530.754.8649
innovationAccess@ucdavis.edu
research.ucdavis.edu/u/s/ia
Fax: 530.754.7620

© 2015 - 2018, The Regents of the University of California

Terms of use

Privacy Notice