Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)

Tech ID: 24435 / UC Case 2010-150-0

BRIEF DESCRIPTION
This method produces an LED structure using ZnO nanorod arrays on surfaces other than the (0001) p-GaN surface and also on multiple surfaces of the LED.

BACKGROUND
To improve the light extraction efficiency of LEDs, transparent conductive oxides (TCOs) with high refractive indices — such as indium-tin-oxide (ITO), zinc oxide (ZnO), aluminum-doped-zinc-oxide (AZO) — are widely used. Films of these materials increase the probability of light escaping the LED through the TCO, thus increasing overall light output. ITO, however, is cost prohibitive, making zinc oxide films a better choice for commercial scalability.

DESCRIPTION
This method produces an LED structure using ZnO nanorod arrays on surfaces other than the (0001) p-GaN surface and also on multiple surfaces of the LED. The ZnO nanorod arrays can be synthesized using low-cost solution processing methods and produced on various LED surfaces such as GaN-faced C-plane surfaces, non-polar and semi-polar surfaces, and also non-GaN surfaces such as substrates and transparent current-spreading layers. It enhances light output from both lateral and vertical-type LEDs.

ADVANTAGES
▶ Increased light output
▶ Low-cost fabrication

APPLICATIONS
▶ LEDs
▶ Solar cells
▶ GaN-based devices

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,841,691</td>
<td>09/23/2014</td>
<td>2010-150</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,536,618</td>
<td>09/17/2013</td>
<td>2010-150</td>
</tr>
</tbody>
</table>

OTHER INFORMATION

KEYWORDS
ZnO, zinc oxide, TCO, transparent conductive oxide, cnenIE, indLED, LED, ZnO nanorod array, indssl

CATEGORIZED AS
▶ Energy
▶ Lighting
▶ Materials & Chemicals
▶ Other
▶ Semiconductors
▶ Design and Fabrication

RELATED CASES
2010-150-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
▶ Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
▶ High Efficiency LED with Optimized Photonic Crystal Extractor
▶ Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
▶ Edge-Emitting Laser Diode with Via-Activated Tunnel Junction Contact
▶ Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
▶ Flexible Arrays of MicroLEDs using the Photoelectrochemical (PEC) LiftOff Technique
▶ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
▶ Gallium-containing MicroLEDs for Displays
▶ Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
- Defect Reduction in GaN films using in-situ SiNx Nanomask
- Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Phosphor-Free White Light Source
- Control of Photoelectrochemical (PEC) Etching by Modification of the Local Electrochemical Potential of the Semiconductor Structure
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- Laser Diode With Tunnel Junction Contact Surface Grating
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Method for Enhancing Growth of Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Increased Light Extraction with Multistep Deposition of ZnO on GaN
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Near-Infrared, Flip-Chip, TCO-Clad, InGaN Quantum Dot Laser Diode
- Incorporating Temperature-Sensitive Layers in III-N Devices
- Oxyfluoride Phosphors for Use in White Light LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,Aj)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Heterogeneously Integrated GaN on Si Photonic Integrated Circuits
- (Al,In,Ga,B)N Device Structures
- Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Formation of Transparent Integrated MicroLED Displays
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- Improved Manufacturing of Solid State Lasers via Patterned Photonics Crystals
- Solid Solution Phosphors for Use in Solid State White Lighting Applications
- Multifaceted III-Nitride Surface-Emitting Laser
- Tunable White Light Based on Polarization-Sensitive LEDs
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- III-Nitride VCSEL with a High Indium Content Active Region
- Growth of High-Performance M-plane GaN Optical Devices
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- High Light Extraction Efficiency III-Nitride LED
- III-V Nitride Device Structures on Patterned Substrates
- Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
- Method for Increasing GaN Substrate Area in Nitride Devices
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- Improved Manufacturing of Semiconductor Lasers
- LED Device Structures with Minimized Light Re-Absorption
- Improved Light Extraction with Geometrically Tuned LED Arrays
- Growth of Planar Semi-Polar Gallium Nitride
- Nonpolar (Al, B, In, Ga)N Quantum Well Design
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
- Wafer Bonding for Embedding Active Regions with Relaxed Nanostructures
- Enhancing Growth of Semipolar (Al,Ga,B)N Films via MOCVD