Permalink

(SD2014-159) 3D Fabrication of Piezoelectric Polymer Composite Materials

Tech ID: 24418 / UC Case 2014-159-0

BACKGROUND

Piezoelectric materials are key components in a range of devices including acoustic imaging, energy harvesting, and actuators and typically rely on brittle ceramic monoliths to perform their functions. To control the size and or shape of the piezoelectrics, it is common to use mechanical dicing or saws. However, this limits not only the size of the piezoelectric element but also the dimensionality. It is nearly impossible with current cutting techniques to shape brittle ceramics into higher order 3D structures, which could have a huge impact on compact sensor designs, tunable acoustic arrays, efficient energy scavengers, and diagnostic devices. There is an unmet need for simple approaches to fabricating 3D structures in piezoelectric polymers or multilayered architectures which would open up infinite possibilities in the design of more complicated device geometries.

TECHNOLOGY DESCRIPTION

Nanoengineers from UC San Diego have invented and patented piezoelectric nanoparticle– polymer composite materials that can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. This technology lays the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning. Details of this invention are published (Kim *et al.* 2014).

CONTACT

Skip Cynar scynar@ucsd.edu tel: 858-822-2672.

INTRODUCING UC TechAlerts New technology matches delivered to your email at your preferred schedule SEARCH
SAVE SEARCH Lecrn More

OTHER INFORMATION

KEYWORDS piezoelectric; 3D printing; nanoparticle; PEG; polymer; photopolymerization

CATEGORIZED AS

Energy
 Other
 Materials & Chemicals
 Composites

RELATED CASES 2014-159-0

APPLICATIONS

Applications range from loud speakers and acoustic imaging to energy harvesting and electrical actuators. The potential to print virtually any 3D piezoelectric shape, while maintaining a strong piezoelectric coefficient and biocompatible properties, this technology will find application in:

- biomimic materials (e.g., artificial skin, tympanic membrane)
- integrated micro/nanoelectromechanical systems (e.g. mechanical actuators), sensors (e.g.

acoustic detection)

- bio-imaging (high resolution, compact ultrasonic imaging instruments)
- *in vitro* energy scavenging

RELATED MATERIALS

▶ Kim K, W Zhu, X Qu, C Aaronson, S Chen, and DJ Sirbuly. 3D Optical Printing of Piezoelectric Nanoparticle-Polymer Composite Materials. ACS Nano, DOI: 10.1021/nn503268f Pub Date: July 21, 2014. - 07/21/2014

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	0161534 A1	05/21/2020	2014-159

OTHER INFORMATION

UC San Diego is actively seeking companies interested in commercializing technology

protected by an issued US patent: 1,171,281 (20 claims)

https://patents.google.com/patent/US11171281B2/en?

oq=US11171281B2

(12) United States Patent

Sirbuly et al.

- (54) PIEZOELECTRIC NANOPARTICLE-POLYMER COMPOSITE STRUCTURE
- (71) Applicant: The Regents of the University of California, Oakland, CA (US)
- (72) Inventors: Donald J. Sirbuly, Carlsbad, CA (US); William R. McCall, Woodside, CA (US); Kanguk Kim, La Jolla, CA (US)
- (73) Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, Oakland, CA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 126 days.
- Appl. No.: 16/228,608 (21)
- (22)Filed: Dec. 20, 2018

Prior Publication Data (65)

```
US 2019/0252599 A1
                       Aug. 15, 2019
```

Related U.S. Application Data

(63) Continuation of application No. 14/974,582, filed on

US 11,171,281 B2 (10) Patent No.: Nov. 9, 2021

(45) Date of Patent:

(52) U.S. Cl.

(56)

- CPC H01L 41/183 (2013.01); B29C 67/202 (2013.01); H01L 41/37 (2013.01); B29K 2075/00 (2013.01); B29K 2083/00 (2013.01); B29K 2105/002 (2013.01); B29K 2105/167 (2013.01); B29K 2995/0003 (2013.01)
- Field of Classification Search (58) CPC H01L 41/183; H01L 41/37 See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

8,310,134	B2	11/2012	Ajayan et al.	HOLE 41/37
8,805,400	B2 -	0/2014	Lee	310/339
10,199,560	B2 *	2/2019	Sirbuly	H01L 41/37
		(Con	tinued)	

FOREIGN PATENT DOCUMENTS

CN 103289363 * 9/2013

OTHER PUBLICATIONS

D. Kim et al, "Preparation and chacterization of UV-cured polyuretane acrylate/ZnO nanocomposite films based on surface modified ZnO", Progess in Organic Coating, 74, pp. 435-442, Feb. 4, 2012.*

sity of

(Continued)

University of California, San Diego	Tel: 858.534.5815	© 2014 - 2024, The
Office of Innovation and Commercialization	innovation@ucsd.edu	Regents of the Univer
9500 Gilman Drive, MC 0910, ,	https://innovation.ucsd.edu	California
La Jolla,CA 92093-0910	Fax: 858.534.7345	Terms of use
		Privacy Notice