Novel Peptide Capable of Stimulating Disease Resistance in Plants

Tech ID: 24280 / UC Case 2014-882-0

ABSTRACT

Pamela Ronald and researchers at the Joint BioEnergy Institute (JBEI) have discovered raxX, a novel peptide that activates the Xa21 immune response pathway, capable of conferring robust disease resistance, and methods for its use. Application of the peptide activates the plant immune responses and eliminating bacterial infection. Engineering plants to express both raxX and Xa21 under an inducible control is expected to lead to robust resistance in diverse plant species.

FULL DESCRIPTION

Cell surface pattern recognition receptors (PRRs) are essential to innate immune responses in plants. These receptors are able to identify pathogens with certain pathogen associated molecular patterns (PAMPs) at the cell surface and then initiate an intracellular immune response. In plants, cell surface recognition of PAMPs is typically carried out by receptor kinases. In rice, one such receptor kinase is XA21 which mediates recognition of Xanthomonas oryzae pv. oryzae (Xoo), a bacterium that causes bacterial blight. Upon XA21 cell surface recognition of Xoo, the receptor kinase mediates a robust immune response within the cell.

Pamela Ronald and researchers at the Joint BioEnergy Institute (JBEI) have developed a synthetic polypeptide that upon exposure to a plant that expresses XA21, is capable of stimulating the XA21 pathway, thus enhancing disease resistance in the plant. Once exposed to the peptide, a plant will have a more robust immune response upon contact with naturally occurring pathogens such as Xoo. Improved immunity can help to stabilize crop production in areas by bacterial blight. Additionally, target plants can be engineered to constitutively express Xa21 and inducibly express the novel peptide. The result is the ability to engineer plants with resistance to a wide variety of potential pathogens.

The Joint BioEnergy Institute (JBEI, www.jbei.org) is a scientific partnership led by the Lawrence Berkeley National Laboratory and including the Sandia National Laboratories, the University of California campuses of Berkeley and Davis, the Carnegie Institution for Science and the Lawrence Livermore National Laboratory. JBEI’s primary scientific mission is to advance the development of the next generation of biofuels.

APPLICATIONS

- Conferring disease resistance in plants by stimulating an innate immune response

FEATURES/BENEFITS

- Synthetic polypeptide
- Enhanced disease resistance
- Robust immune response
- Target plants can be engineered to constitutively express the receptor and inducibly express the peptide

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Published Application</td>
<td>2018002717</td>
<td>01/14/2018</td>
<td>2014-882</td>
</tr>
</tbody>
</table>

Additional Patents Pending

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Energy Crops Engineered for Increased Sugar Extraction through Inhibition of snl6 Expression
- Improved Xylan Extraction
- Improved Saccharification Efficiency by Inhibiting a Xylosyltransferase