Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
Tech ID: 24138 / UC Case 2011-579-0

BRIEF DESCRIPTION
A new method to improve performance of group-III nitride devices by limiting the strain-relaxation on crystal substrates to prevent lattice plane slip.

BACKGROUND
The usefulness of group-III nitrides such as gallium nitride (GaN) and its alloys has been well established for its use in the fabrication of optoelectronic and high-powered electronic devices. Given recent trends in industry standards, it is desirable to produce ultra-bright LEDs and LDs in the green regions, including colors such as green, amber, and red. The problem with producing LEDs and LDs in the green regions by epitaxy is due to the complications in producing high quality, thick, and high in composition crystals. During growth, the lattice planes of the crystals slip, causing additional threading dislocations which will result in misfit dislocations that degrade the performance of the device.

DESCRIPTION
Researchers at the University of California, Santa Barbara have developed a new method to improve performance of group-III nitride devices by limiting the strain-relaxation on crystal substrates to prevent lattice plane slip. This new process uses silicon doping to create a new relaxed buffer layer with limited thread dislocations. This new buffer layer reduces the strain during subsequent growth of III-nitride alloy layers. By reducing this strain on the layers using this process, lattice plane slip is prevented, new thread dislocations are prevented, and overall defect density is reduced allowing for higher performance for ultra-bright LEDs, LDs, and high powered electronic devices.

ADVANTAGES
- Reduced strain on device layers
- Reduced thread and misfit dislocations
- High thickness/composition group-III nitride stacking
- Reduced complications of lattice mismatch
- Improved device performance

APPLICATIONS
- UV and Green Region LEDs and LDs
- Group-III Nitride Materials
- Optoelectronics and Electronic Devices

INVENTORS
- DenBaars, Steven P.
- Hardy, Matthew T.
- Hsu, Po Shan
- Nakamura, Shuji
- Speck, James S.

CONTACT
University of California, Santa Barbara Office of Technology & Industry Alliances
dobis@tia.ucsb.edu
tel: View Phone Number.

OTHER INFORMATION
KEYWORDS
indSSL, indLED, LED

CATEGORIZED AS
- Energy
- Lighting
- Materials & Chemicals
- Electronics Packaging
- Semiconductors
- Materials

RELATED CASES
2011-579-0
ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
- High Efficiency LED with Optimized Photonic Crystal Extractor
- Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
- Edge-Emitting Laser Diode with Via-Activated Tunnel Junction Contact
- Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Flexible Arrays of MicroLEDs using the Photoelectrochemical (PEC) Lift-off Technique
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Gallium-containing MicroLEDs for Displays
- High Speed Indium Gallium Nitride Multi-Quantum Well (InGaN MQW) Photodetector
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
- Defect Reduction in GaN films using in-situ SiNx Nanomask
- Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Phosphor-Free White Light Source
- Volumetric Hole Injection with Intentional V-Defects
- Control of Photoelectrochemical (PEC) Etching by Modification of the Local Electrochemical Potential of the Semiconductor Structure
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- Laser Diode With Tunnel Junction Contact Surface Grating
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Method for Growing Self-Assembled Quantum Dot Lattices
- Method for Enhancing Growth of Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Increased Light Extraction with Multistep Deposition of ZnO on GaN
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Near-Infrared, Flip-Chip, TCO-Clad, InGaN Quantum Dot Laser Diode
- Incorporating Temperature-Sensitive Layers in III-N Devices
- Oxyfluoride Phosphors for Use in White Light LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,AI)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Heterogeneously Integrated GaN on Si Photonic Integrated Circuits
- (Al, In, Ga, B)N Device Structures
- Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- 3D Hole Injectors for InAlGaN Light-Emitting Diodes
- Formation of Transparent Integrated MicroLED Displays
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices