Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning

Tech ID: 24137 / UC Case 2010-804-0

BRIEF DESCRIPTION

A new method of improving performance of group-III nitride devices by limiting the strain-relaxation on crystal substrates.

BACKGROUND

The usefulness of group-III nitrides such as gallium nitride (GaN) and its alloys has been well established for its use in the fabrication of optoelectronic and high-powered electronic devices. Given recent trends in industry standards, it is desirable to produce ultra-bright LEDs and LDs in regions beyond the blue region and in the green region. The problem with producing LEDs and LDs in the green regions by epitaxy is due to the complications in producing high-quality, high-in-composition crystals. When high-in-composition crystal structures are grown on a strained substrate layer, this causes misfit dislocations which degrade device performance.

DESCRIPTION

Researchers at the University of California, Santa Barbara have developed a new method of improving performance of group-III nitride devices by limiting the strain-relaxation on crystal substrates. Limiting the strain-relaxation on group-III nitride substrates is achieved through a novel process of patterning the substrate with a specialized film which reduces the pre-existing thread dislocations before growth of the subsequent layers. By reducing these pre-existing thread dislocations, less misfit dislocation will result during layer growth and will allow for the growth of thicker/higher in composition layers of III-nitride alloy epilayers.

ADVANTAGES

▶ Reduced strain on device layers
▶ Reduced thread and misfit dislocations
▶ High thickness/composition group-III nitride stacking
▶ Reduced complications of lattice mismatch
▶ Improved device performance

APPLICATIONS

▶ UV and Green Region LEDs and LDs
▶ Group-III Nitride Materials
▶ Optoelectronics and Electronic Devices

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>8,853,669</td>
<td>10/07/2014</td>
<td>2010-804</td>
</tr>
</tbody>
</table>

INVENTORS

▶ DenBaars, Steven P.
▶ Nakamura, Shuji
▶ Speck, James S.
▶ Tyagi, Anurag

OTHER INFORMATION

KEYWORDS

indSSL, indLED, LED, substrate patterning, III-nitride, indfeat, indenergy

CATEGORIZED AS

▶ Energy
▶ Lighting
▶ Semiconductors
▶ Design and Fabrication

RELATED CASES

2010-804-0

CONTACT

University of California, Santa Barbara Office of Technology & Industry Alliances
dobis@tia.ucsb.edu
tel: View Phone Number.

INVENTORS

▶ DenBaars, Steven P.
▶ Nakamura, Shuji
▶ Speck, James S.
▶ Tyagi, Anurag

OTHER INFORMATION

KEYWORDS

indSSL, indLED, LED, substrate patterning, III-nitride, indfeat, indenergy

CATEGORIZED AS

▶ Energy
▶ Lighting
▶ Semiconductors
▶ Design and Fabrication

RELATED CASES

2010-804-0
ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
- High Efficiency LED with Optimized Photonic Crystal Extractor
- Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
- Edge-Emitting Laser Diode with Via-Activated Tunnel Junction Contact
- Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Flexible Arrays of MicroLEDs using the Photoelectrochemical (PEC) Lift-off Technique
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Gallium-containing MicroLEDs for Displays
- High Speed Indium Gallium Nitride Multi-Quantum Well (InGaN MQW) Photodetector
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
- Defect Reduction in GaN films using in-situ SiNx Nanomask
- Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Phosphor-Free White Light Source
- Volumetric Hole Injection with Intentional V-Defects
- Control of Photoelectrochemical (PEC) Etching by Modification of the Local Electrochemical Potential of the Semiconductor Structure
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- Laser Diode With Tunnel Junction Contact Surface Grating
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Method for Growing Self-Assembled Quantum Dot Lattices
- Method for Enhancing Growth of Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Increased Light Extraction with Multistep Deposition of ZnO on GaN
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Selective-Area Mesoporous Semiconductors And Devices For Optoelectronic And Photonic Applications
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Near-Infrared, Flip-Chip, TCO-Clad, InGaN Quantum Dot Laser Diode
- Incorporating Temperature-Sensitive Layers in III-N Devices
- Oxyfluoride Phosphors for Use in White Light LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,Au)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Heterogeneously Integrated GaN on Si Photonic Integrated Circuits
- (Al, In, Ga, BJ)N Device Structures
- Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- 3D Hole Injectors for InAlGaN Light-Emitting Diodes
- Formation of Transparent Integrated MicroLED Displays
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- In-Situ Methods Of Preventing Interfacial Impurities And Dry Etch-Induced Damage In Regrown III-Nitride Structures
- Enhanced Hole Injection by P-Type Active Region and Lateral Injection in InAlGaN LEDs
- Improved Manufacturing of Solid State Lasers via Patterning of Photonic Crystals
- Solid Solution Phosphors for Use in Solid State White Lighting Applications
- Multifaceted III-Nitride Surface-Emitting Laser
- Tunable White Light Based on Polarization-Sensitive LEDs
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- III-Nitride VCSEL with a High Indium Content Active Region
- Growth of High-Performance M-plane GaN Optical Devices
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- High Light Extraction Efficiency III-Nitride LED
- Photoelectrochemical Etching for Chip Shaping Of LEDs
- III-V Nitride Device Structures on Patterned Substrates
- Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
- Method for Increasing GaN Substrate Area in Nitride Devices
- Burying Impurities And Defects In Regrown III-Nitride Structures
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Improved Manufacturing of Semiconductor Lasers
- LED Device Structures with Minimized Light Re-Absorption
- Improved Light Extraction with Geometrically Tuned LED Arrays
- Growth of Planar Semi-Polar Gallium Nitride
- Nonpolar (Al, B, In, Ga)N Quantum Well Design
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
- Wafer Bonding for Embedding Active Regions with Relaxed Nanofeatures
- Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD