Thermally Stable, Laser-Driven White Lighting Device
Tech ID: 24050 / UC Case 2013-951-0

BRIEF DESCRIPTION
A high power, laser driven white light source that maintains efficiency and color stability at high temperatures.

BACKGROUND
Light emitting diodes (LEDs) are advantageous over incandescent and fluorescent light sources due to their energy efficiency and longer lifetimes, and efforts are continually being made to increase the efficiency of LED devices. When operating, an LED’s temperature will inevitably increase and result in decreased efficiency of the light emitting phosphor particles, as well as color instability. These factors have made high powered, white lighting devices unattainable using current LEDs as the excitation source.

DESCRIPTION
Researchers at the University of California, Santa Barbara have developed a high power, laser driven white light source that maintains efficiency and color stability at high temperatures. By using a laser diode light source, as well as one or more phosphors deposited on a thermally conductive substrate that is either transparent or reflective and placed at a remote distance from the laser source, this technology works to eliminate the temperature dependence of the device. Depending on the final application this thermally conductive substrate can be transparent or reflective and is used remotely at a close range or at a relatively far distance. This technology offers a stable, energy efficient, high power solid state white light that eliminates many of the loss mechanisms that lead to decreased efficiency in LED-based white lighting devices.

ADVANTAGES
- Remote capabilities
- Improved efficiency and color stability
- High potential for new applications

APPLICATIONS
- Solid state lighting devices
- Laser diodes

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>9,927,076</td>
<td>03/27/2018</td>
<td>2013-951</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>9,574,728</td>
<td>02/21/2017</td>
<td>2013-951</td>
</tr>
</tbody>
</table>

INVENTORS
- DenBaars, Steven P.
- McCurdy, Kristin A.
- Seshadri, Ram

OTHER INFORMATION
KEYWORDS
indssl, indLED, solid state lighting, white lighting, phosphors, cenIEE

CATEGORIZED AS
- Energy
- Lighting

RELATED CASES
2013-951-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
- Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
III-Nitride-Based Devices Grown With Relaxed Active Region
Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
Defect Reduction in GaN films using in-situ SiNx Nanomask
Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
Low Temperature Deposition of Magnesium Nitride for High-Power-Output GaN-Based LEDs
Transparent Mirrorless (TML) LEDs
Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
Stand-Alone Ceramic Phosphor Composites for Laser-Excited Solid-State White Lighting
Size-Independent Forward Voltage Micro-LED with an Epitaxial Junction
Method for Enhancing Growth of Semipolar Nitride Devices
III-Nitride Tunnel Junction with Modified Interface
Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
Increased Light Extraction with Multistep Deposition of ZnO on GaN
Selective-Area Mesoporous Semiconductors and Devices For Optoelectronic and Photonic Applications
High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
Oxyfluoride Phosphors for Use in White Light LEDs
Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
In,Ga,Aj,N Optoelectronic Devices with Thicker Active Layers for Improved Performance
MOVCD Growth of Planar Non-Polar M-Plane Gallium Nitride
Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
Highly Compact, High-Index Dielectric Nanostructures for Deep-Ultraviolet Devices
Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDs
Methods for Fabricating III-Nitride Tunnel Junction Devices
Low-Droop LED Structure on GaN Semi-polar Substrates
Contact Architectures for Tunnel Junction Devices
Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
Semi-polar-Based Yellow, Green, Blue LEDs with Improved Performance
III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material
Growth of Semipolar III-V Nitride Films with Lower Defect Density
III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
Improved Manufacturing of Solid State Lasers via Patternning of Photonic Crystals
High Efficiency III-Nitride Devices with Smooth Relaxed InGaN Buffer and Strain Compliant Template
Tunable White Light Based on Polarization-Sensitive LEDs
Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
Growth of High-Performance M-plane GaN Optical Devices
Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
Improved Anisotropic Strain Control in Semipolar Nitride Devices
High Light Extraction Efficiency III-Nitride LED
III-V Nitride Device Structures on Patterned Substrates
Activation of P-Type Layers of Tunnel Junctions in Micro-LEDs
Method for Increasing GaN Substrate Area in Nitride Devices
Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
GaN-Based Thermoelectric Device for Micro-Power Generation
Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patternning
LED Device Structures with Minimalized Light Re-Absorption
Growth of Planar Semi-Polar Gallium Nitride
Nonpolar (Al, B, In, Ga)N Quantum Well Design
UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
Defect Reduction of Non-Polar and Semi-Polar III-Nitrides