Berkeley IPIRA

Request Information

REDOX-ACTIVE METAL-ORGANIC FRAMEWORKS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

Tech ID: 23844 / UC Case 2014-098-0

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	10,058,855	08/28/2018	2014-098

BRIEF DESCRIPTION

The selective and efficient conversion of light alkanes into value-added chemicals remains a challenge for those in the petrochemical and chemical industries. Currently, there is no go-to commercial process for the selective oxidative conversion of C₁-C₃ hydrocarbons into value-added chemical feedstocks, such as methanol and ethanol. Industrially, methanol is produced in an indirect and energy intensive process beginning with the steam reformation of natural gas into synthesis gas. After fermentation, ethanol is largely produced from the hydration of ethylene/ethene, which relies on the use of concentrated acids and elevates risk for human safety and environment. To overcome these challenges, researchers at UC Berkeley have devised novel materials and methods involving redox-active metals within porous metal-organic frameworks for driving improved catalytic oxidation of small hydrocarbons to their corresponding alcohols and aldehydes. This innovation could be of special importance to the boom of shale gas processing, which consists of largely methane, but also contains large amounts of ethane and other light alkane impurities.

SUGGESTED USES

- » Chemical processing
- » Natural gas processing

ADVANTAGES

- » Greener alternative to traditional approaches in industry
- » Reactions occur in desirable temperature and pressure ranges
- » Leverages industry standard chemical processing platforms

RELATED MATERIALS

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Next-Generation Metal-Organic Frameworks With High Deliverable Capacities For Gas Storage Applications
- Structures and Apparatus using Three-Dimensional Linked Networks
- Gas Separations With Redox-Active Metal-Organic Frameworks
- Metal-Organic Frameworks For Aromatic Hydrocarbon Separations
- Novel Porous Organic Polymers for Ammonia Adsorption
- Metal-Organic Frameworks for H2 Adsorption and Drug Delivery

CONTACT

Michael Cohen mcohen@berkeley.edu tel: 510-643-4218.

Permalink

INVENTORS

» Long, Jeffrey R.

OTHER INFORMATION

KEYWORDS

metal organic framework, catalytic

oxidation, hydrocarbon, alkanes,

methane, ethane, propane, C1, C3

CATEGORIZED AS

» Energy

>>> Hydrocarbon

» Materials & Chemicals

» Chemicals

RELATED CASES 2014-098-0

University of California, Berkeley Office of Technology Licensing
2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704
Tel: 510.643.7201 | Fax: 510.642.4566
ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu
© 2013 - 2018, The Regents of the University of California
Terms of use | Privacy Notice