Request Information Permalink

ASYMETRIC ELECTROPHILIC FLUORINATION USING AN ANIONIC CHIRAL PHASEE-TRANSFER CATALYST

Tech ID: 23405 / UC Case 2012-047-0

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	9,981,977	05/29/2018	2012-047

BRIEF DESCRIPTION

The invention is a novel family of chiral catalysts for electrophilic addition reactions especially for fluorination. The catalysts are salts including a chiral anionic component a a cationic component. They are chiral, non-racemic compounds that function as phase transfer catalysts in certain asymmetric synthetic organic transformations.

SUGGESTED USES

The ability to selectively transform a prochiral center in a compound to an enantiomerically enriched or enantiomerically pure chiral center has broad application, especially in the agricultural, pharmaceutical and polymer industries.

ADVANTAGES

Transform a prochiral center in a compound to an enamtiomerically enriched or enantiomerically pure chiral center.

RELATED MATERIALS

OTHER INFORMATION

Non-exclusively licensed.

CONTACT

Craig K. Kennedy craig.kennedy@berkeley.edu tel:

INVENTORS

» Toste, Francisco D.

OTHER INFORMATION

CATEGORIZED AS

- » Biotechnology
 - >> Health
- » Medical
 - » New Chemical Entities,

Drug Leads

>> Therapeutics

RELATED CASES2012-047-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

▶ Redox-Based Reagents For Methionine Bioconjugation

University of California, Berkeley Office of Technology Licensing

2150 Shattuck Avenue, Suite 510, Berkeley,CA 9470

Tel: 510.643.7201 | Fax: 510.642.4566

 $https://ipira.berkeley.edu/\mid otl-feedback@lists.berkeley.edu$

© 2022, The Regents of the University of California

Terms of use | Privacy Notice