

All-To-All Interconnection With Wavelength Routing Devices

Tech ID: 23277 / UC Case 2012-846-0

ABSTRACT

A method that uses wavelength routing devices such as arrayed waveguide grating routers

(AWGR) and Echelle grating routers to realize a passive interconnection network with a reduced number of wavelengths to implement all-to-all interconnection.

FULL DESCRIPTION

Today's data centers, multi-processor/core based high performance computing systems rely on interconnection of many electronic switches or wires concatenated in multi-stage interconnection topologies with limited scalability. These electronic switch architectures result in poor performance in throughput, latency, scalability. All-optical switching supports the need for massive concurrency and scalability in parallel computing.

Researchers at the University of California, Davis have developed a technique that uses Arrayed Waveguide Grating Routers (AWGRs) and other routing devices to realize a reduced number of wavelengths needed for all-to-all communication among N nodes. The reduction in the number of wavelengths used increases scalability and operability. The methodology provides for a single hop distance between any two nodes providing for low latency communication and supports up to N^2 simultaneous contention-free connections resulting in a maximum bisection bandwidth of N^2 . The resulting interconnection is passive increasing the power efficiency in comparison to electronic switches. The method addresses the need for increased bandwidth, high-throughput, and low latency data transmission.

APPLICATIONS

This invention has the following application:

▶ Telecommunication

FEATURES/BENEFITS

▶ Reduced amount of required wavelengths

CONTACT

Michael M. Mueller mmmueller@ucdavis.edu tel: .

INVENTORS

- ▶ Wen, Ke
- ► Yoo, S.J. Ben

OTHER INFORMATION

KEYWORDS

Router, Computer system, Network, Interconnection, Fiberoptics

CATEGORIZED AS

- **Communications**
 - ▶ Internet
 - Networking
 - Optical
- **▶** Computer
 - ▶ Hardware

RELATED CASES

2012-846-0

- ▶ Flat hierarchy allowing for a single hop between nodes resulting in low latency
- ▶ Passive interconnection network allowing for power efficiency
- ► Increased bandwidth

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	9,401,774	07/26/2016	2012-846

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Higher-Speed and More Energy-Efficient Signal Processing Platform for Neural Networks
- ► Crystal Orientation Optimized Optical Frequency Shifter
- ► Hyperspectral Compressive Imaging
- ▶ Multi-Wavelength, Nanophotonic, Neural Computing System
- ► Athermal Nanophotonic Lasers
- ▶ Ultra-High Resolution Multi-Platform Heterodyne Optical Imaging
- ► Multi-Wavelength, Laser Array
- ▶ Optical Interposers for Embedded Photonics Integration
- ▶ Ultrahigh-Bandwidth Low-Latency Reconfigurable Memory Interconnects by Wavelength Routing
- ▶ Development of a CMOS-Compatible, Nano-photonic, Laser
- ▶ Energy Efficient and Scalable Reconfigurable All-to-All Switching Architecture
- ► Compressive High-Speed Optical Transceiver
- ► All-Optical Regenerators
- ► Tensorized Optical Neural Network Architecture
- ▶ Silicon Based Chirped Grating Emitter for Uniform Power Emission
- ► Energy-Efficient All-Optical Nanophotonic Computing
- ▶ 3D Photonic and Electronic Neuromorphic Artificial Intelligence
- ▶ Adapting Existing Computer Networks to a Quantum-Based Internet Future

University of California, Davis	Tel:	© 2013 - 2025, The Reger	ats of the University of
Offiversity of Camornia, Davis	iei.	© 2013 - 2023, The Regel	its of the offiversity of
Technology Transfer Office	530.754.8649		California
1 Shields Avenue, Mrak Hall 4th Floor,	techtransfer@ucdavis.edu		Terms of use
Davis,CA 95616	https://research.ucdavis.edu/technology-		<u>Privacy Notice</u>
	<u>transfer/</u>		
	Fax:		
	530.754.7620		