

Technology & Industry Alliances

Available Technologies

Contact Us

Request Information

Permalink

Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films

Tech ID: 21908 / UC Case 2004-636-0

BRIEF DESCRIPTION

A novel method of growing highly planar, fully transparent and specular m-plane gallium nitride (GaN) films.

BACKGROUND

Current nitride technology for electronic and optoelectronic devices employs nitride films grown along the polar c-direction. However, conventional c-plane quantum well structures in III-nitride based optoelectronic and electronic devices suffer from the undesirable quantum-confined Stark effect (QCSE), due to the existence of strong piezoelectric effects and spontaneous polarizations. Thus, there is a need for an efficient approach to eliminating the spontaneous and piezoelectric polarization effects in GaN optoelectronic devices.

DESCRIPTION

Researchers at the University of California, Santa Barbara have developed a novel method of growing highly planar, fully transparent and specular m-plane gallium nitride (GaN) films. The method provides for a significant reduction in structural defect densities via a lateral overgrowth technique. As a result of this invention, it is now possible to grow high-quality, thick non-polar m-plane GaN films that may be subsequently used as substrates for the growth of improved electronic and optoelectronic devices by a variety of growth techniques.

ADVANTAGES

- ▶ Substantial improvement in (GaN) film quality
- ▶ Reduced dislocation and stacking fault densities

APPLICATIONS

- ► Fabrication of GaN Films
- ► GaN optoelectronic devices

This technology is available for a non-exclusive license.

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	7,956,360	06/07/2011	2004-636

CONTACT

University of California, Santa Barbara Office of Technology & Industry Alliances

padilla@tia.ucsb.edu tel: 805-893-2073.

INVENTORS

- ▶ DenBaars, Steven P.
- ► Haskell, Benjamin A.
- McLaurin, Melvin B.
- Nakamura, ShujiSpeck, James S.

OTHER INFORMATION

KEYWORDS

GaN, gallium nitride, indssl, indled, cenIEE

CATEGORIZED AS

- Engineering
- Semiconductors
 - ► Design and

Fabrication

RELATED CASES

2004-636-0

United States Of America Issued Patent 7,208,393 04/24/2007 2004-636

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- ▶ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- ▶ Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
- ▶ III-Nitride-Based Vertical Cavity Surface Emitting Laser (VCSEL) with a Dielectric P-Side Lens
- ► Aluminum-cladding-free Nonpolar III-Nitride LEDs and LDs
- ► Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Defect Reduction in GaN films using in-situ SiNx Nanomask
- Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- ▶ Implantable Light Irradiation Device For Photodynamic Therapy
- Low Temperature Deposition of Magnesium Doped Nitride Films
- ► Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- ▶ Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- ▶ Method for Enhancing Growth of Semipolar Nitride Devices
- ▶ Ultraviolet Laser Diode on Nano-Porous AlGaN template
- Improved Reliability & Enhanced Performance of III-Nitride Tunnel Junction Optoelectronic Devices
- ► Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- ▶ High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- ▶ Method for Growing High-Quality Group III-Nitride Crystals
- Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- ► Oxyfluoride Phosphors for Use in White Light LEDs
- ▶ Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- ► (In,Ga,AI)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- ► Thermally Stable, Laser-Driven White Lighting Device
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- ► Methods for Fabricating III-Nitride Tunnel Junction Devices
- ► Low-Droop LED Structure on GaN Semi-polar Substrates
- ► Contact Architectures for Tunnel Junction Devices
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- ► Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- ▶ III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material
- ▶ Growth of Semipolar III-V Nitride Films with Lower Defect Density
- ► III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- ► Tunable White Light Based on Polarization-Sensitive LEDs
- ► Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Growth of High-Performance M-plane GaN Optical Devices
- ▶ Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- ► Improved Anisotropic Strain Control in Semipolar Nitride Devices

- Novel Multilayer Structure for High-Efficiency UV and Far-UV Light-Emitting Devices
- ► III-V Nitride Device Structures on Patterned Substrates
- ► Method for Increasing GaN Substrate Area in Nitride Devices
- ► High-Intensity Solid State White Laser Diode
- ▶ Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- ► GaN-Based Thermoelectric Device for Micro-Power Generation
- ▶ Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- ▶ LED Device Structures with Minimized Light Re-Absorption
- ► Growth of Planar Semi-Polar Gallium Nitride
- ▶ High-Efficiency and High-Power III-Nitride Devices Grown on or Above a Strain Relaxed Template
- ▶ UV Optoelectronic Devices Based on Nonpolar and Semi-polar AllnN and AllnGaN Alloys
- ▶ Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- ▶ III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- ► Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD

University of California, Santa Barbara
Office of Technology & Industry Alliances
342 Lagoon Road, ,Santa Barbara,CA 93106-2055 |
www.tia.ucsb.edu
Tel: 805-893-2073 | Fax: 805.893.5236 | padilla@tia.ucsb.edu

© 2011 - 2013, The Regents of the University of California

Terms of use

Privacy Notice