Robotic Microsurgery System
Tech ID: 21536 / UC Case 2009-300-0

SUMMARY
Researchers at UCLA have developed a high accuracy and precision robotic system that can perform complete microsurgical procedures with no manual assistance due to its high range of motion and integrated tracking system.

BACKGROUND
In recent years, robotic manipulators have proven beneficial in assisting surgeons in the performance of minimally invasive procedures with high precision and little tissue damage. Nonetheless, current robotic systems are not suitable for microsurgery procedures due to their limited range of motion, lack of tracking system, and bulky design. Furthermore, because microsurgery requires many instruments the robotic systems need to be equipped with multiple integrated arms that are capable of maneuvering different surgical instruments.

INNOVATION
Researchers at UCLA have developed a robotic system that performs complete micro-surgical procedures by exactly mimicking the motion of a joystick controlled by a surgeon. The system incorporates multiple arms, which can be moved separately or in unison. Each arm holds a surgical instrument that is moved in real time, has high range of motion, and has access to a universal cartridge that facilitates connections for multiple utilities. The instrument precision is further refined by filtering and removing the natural tremor of the surgeon’s hand. Additionally, because micro-surgery requires the instrument to mechanically maintain a fixed-point of rotation at the site of penetration, the system incorporates an integrated tracking system that allows the robot to compensate for patient movement. The tracking system also triggers automatic termination in the event that the patient moves beyond a determined threshold.

APPLICATIONS
▶ Minimally invasive microsurgery

ADVANTAGES
▶ Multiple arm manipulator robotic system
▶ Exact mimicking of the motion of surgeon controlled joystick
▶ Automatic instrument change
▶ Integrated tracking system
▶ High range of motion
▶ Compatible with teleoperated, automated, and hybrid teleoperated/automated systems

PATENT STATUS
<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>Issued Patent</td>
<td>6061974</td>
<td>01/18/2017</td>
<td>2009-300</td>
</tr>
<tr>
<td>Japan</td>
<td>Issued Patent</td>
<td>6061974</td>
<td>12/22/2016</td>
<td>2009-300</td>
</tr>
<tr>
<td>Germany</td>
<td>Issued Patent</td>
<td>602011030340.6</td>
<td>09/14/2016</td>
<td>2009-300</td>
</tr>
<tr>
<td>France</td>
<td>Issued Patent</td>
<td>2523626</td>
<td>09/14/2016</td>
<td>2009-300</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Issued Patent</td>
<td>2523626</td>
<td>09/14/2016</td>
<td>2009-300</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>9,283,043</td>
<td>03/15/2016</td>
<td>2009-300</td>
</tr>
</tbody>
</table>

RELATED MATERIALS
▶ A prototype surgical manipulator for robotic intraocular micro surgery, AP. Mulgaonkar, et al. (2009)

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
▶ Laser-Assisted Intraocular Surgical Alignment
▶ An MR-Compatible System for Motion Emulation
▶ Rapid And Precise Tool Exchange Mechanism For Intraocular Robotic Surgical Systems
▶ System And Method For Automated Image Guided Robotic Intraocular Surgery
Docking System To Stabilize Eyeball During Intraocular Surgery

UCLA Technology Development Group
10889 Wilshire Blvd., Suite 920, Los Angeles, CA 90025
tdg.ucla.edu
Tel: 310.794.0558 | Fax: 310.794.0638 | ncd@tdg.ucla.edu

© 2011 - 2017, The Regents of the University of California
Terms of use
Privacy Notice