

INNOVATION VENTURES

AVAILABLE TECHNOLOGIES

CONTACT US

Request Information

Permalink

Improved and adjustable hyperpolarized magnetic resonance imaging (MRI) method

Tech ID: 21269 / UC Case 2011-002-0

BRIEF DESCRIPTION

Researchers at UCSF and Stanford have developed an improved method for hyperpolarized magnetic resonance imaging (MRI) and magnetic resonance

spectroscopic imaging (MRSI) that increases the observation window while minimally disturbing substrates, allowing for optimal imaging of both substrates and

metabolic products. This method can also be tailored to control the parameters required for optimal imaging of individual compounds

FULL DESCRIPTION

Background

Magnetic resonance imaging (MRI) is a powerful, non-invasive and safe medical procedure allowing detailed imaging of internal structures for the diagnosis of injuries and disease. Unlike CT scans and X-rays, which use ionizing radiation, MRI utilizes magnetic fields and radio waves. MRI and MRSI with hyperpolarized substrates distinctively allows for the localized metabolic imaging of a sample or area of a patient to detect cellular activity, with higher sensitivity than conventional approaches. Changes in molecular markers, such as metabolites, can indicate both the progression and specificity of a disease. The current limitations of hyperpolarized MRI/MRSI are narrow observation windows (limited to several minutes for 13C pyruvate substrate) and low resolution. Invention

Researchers at UCSF and Stanford have developed an improved hyperpolarized MRI/MRSI method that increases the observation window and maximizes the signal. The method minimally perturbs the substrates, allowing for greater conversion from substrates to products. Furthermore, the newly designed multiband excitation pulses can be modified to meet the imaging needs of specific compounds.

ADVANTAGES

- Increased observation window.
- Minimally perturbs substrates, allowing optimal observation of both substrates and products.
- Flexibility: multiband excitation pulses can be tailored based on specific imaging needs.

APPLICATIONS

- Metabolic MRI/MRSI diagnostic exams.
- Dynamic imaging of hyperpolarized substrates and metabolic products for research and clinical use.

PATENTS AND PARTNERSHIP OPPORTUNITIES

For more information please refer to US Patent No: 7795868. Non-exclusive licenses are available.

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	7,795,868	09/14/2010	2011-002

Gonzalo Barrera-Hernandez Gonzalo.Barrera-Hernandez@ucsf.edu tel: 415-502-1637.

CONTACT

INVENTORS

- Chen, Albert
- Kerr, Adam B.
- Larson, Peder E.Z.
- Pauly, John M.
- Vigneron, Daniel B.

OTHER INFORMATION

KEYWORDS

MRI, diagnostic imaging,

MRSI, magnetic resonance

imaging

CATEGORIZED AS

Medical

- Diagnostics
- Imaging

RELATED CASES 2011-002-0

Novel Software for Generating Attenuation Correction Maps with MRI for PET Reconstruction

ADDRESS	CONTACT	CONNECT
UCSF	Tel:	🎔 Follow in Connect
Innovation Ventures	innovation@ucsf.edu	
600 16th St, Genentech Hall, S-272,	https://innovation.ucsf.edu	$^{\odot}$ 2010 - 2011, The Regents of the University
San Francisco,CA 94158	Fax:	of California
		Terms of use Privacy Notice