A Spray-Drying Method for Encapsulating Biological Molecules in Cross-linked Alginate Microcapsules

Tech ID: 20956 / UC Case 2010-695-0

ABSTRACT

Researchers at the University of California, Davis have developed a scalable, spray-drying method for alginate molecule encapsulation.

FULL DESCRIPTION

Encapsulation of molecules in dry, cross-linked alginate microcapsules (CLAMs) has numerous applications in the pharmaceutical, agricultural/nutritional and chemical sectors. Among encapsulation matrices, alginate is preferred due to its low cost, biodegradability, and biocompatibility. While alginate microcapsules offer advantages related to core material protection and release, current methods for encapsulating biological molecules and cells in cross-linked alginates are both time-consuming and energy-intensive. Frequently, the size of the produced particles is also limited to those having large diameters. Thus, an improved method for CLAM production would enable wider use of alginate microcapsules across multiple industries.

Researchers at the University of California, Davis have developed a process for producing cross-linked alginate microcapsules using a time-efficient and economical spray-drying method. This method streamlines CLAM production into a single unit operation by accomplishing particle formation, cross-linking, and drying all during the spray-drying process. This process is commercially scalable and involves considerably fewer unit operations than existing methods for CLAM preparation.

CLAMS have proven effective in several applications of commercial importance – including prolonging the limited viability of bacteria and enabling the controlled release of nutrients in the intestine. By using an easily scalable, spray-drying method to encapsulate molecules, the various benefits of alginate can be leveraged across a much wider range of industries – including pharmaceuticals, agriculture, chemicals and food and nutritional applications.

This same process can be applied to encapsulation using soy protein.

APPLICATIONS

› Suitable for use in multiple industries
› Can be used to encapsulate biological molecules, cells, probiotics, nutraceuticals, and other biochemicals

FEATURES/BENEFITS

› Increased yields of cross-linked alginate (or soy protein) particles of controlled particle size and narrow size distribution
› Encapsulation using renewable polymers
› One-step process that includes particle formation, particle cross-linking and particle drying
› Controlled release of encapsulated ingredients and prolonged viability of active agents

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>10,610,492</td>
<td>04/07/2020</td>
<td>2010-695</td>
</tr>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>9,700,519</td>
<td>07/11/2017</td>
<td>2010-695</td>
</tr>
</tbody>
</table>

RELATED MATERIALS

RELATED TECHNOLOGIES
▶ One Step Process of Forming Complex Coacervation During Spray Drying

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS
▶ Spray Dry Method for Calcium Cross-linked Alginate Encapsulation of Biological and Chemical Moieties via the Use of Chelating Agents
▶ One Step Process of Forming Complex Coacervation During Spray Drying