Improved Manufacturing of Semiconductor Lasers
Tech ID: 18968 / UC Case 2005-721-0

BRIEF DESCRIPTION

A method of fabricating solid state lasers with embedded structures for improved performance via patterning.

BACKGROUND

There is a need to improve the performance of horizontal emitting, vertical emitting, beam shaped and distributed feedback lasers. Traditionally, photonic crystals placed on the surface of the devices have been used to improve performance.

DESCRIPTION

Researchers at UCSB have developed a method of fabricating solid state lasers with embedded structures for improved performance via patterning. The patterned layer(s) may be engineered to act as a mirror, optical confinement layer, grating, wavelength selective element, beam shaping element, etc. for the active layers. The key advantage of this improvement is that it places the photonic crystal layer above the active layer for better performance. Conventional approaches place the photonic crystal layer below the active layer.

ADVANTAGES

› Improved performance of the laser
› Improved contact structures and reduced waveguiding loss by contact electrodes

APPLICATIONS

› fiber optic networks
› Instrumentation lasers
› Optical spectroscopy

This technology is available for licensing.

PATENT STATUS

<table>
<thead>
<tr>
<th>Country</th>
<th>Type</th>
<th>Number</th>
<th>Dated</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Of America</td>
<td>Issued Patent</td>
<td>7,768,024</td>
<td>08/03/2010</td>
<td>2005-721</td>
</tr>
</tbody>
</table>

RELATED TECHNOLOGIES

› Mirrorless LED With High Luminous Efficiency

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

› Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Substrates
› High Efficiency LED with Optimized Photonic Crystal Extractor
› Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
› Edge-Emitting Laser Diode with Via-Activated Tunnel Junction Contact
› Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
› Flexible Arrays of MicroLEDs using the Photoelectrochemical (PEC) Liftoff Technique
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
- Photonic Structures for Efficient Light Extraction and Conversion in Multi-Color LEDs
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Phosphor-Free White Light Source
- Volumetric Hole Injection with Intentional V-Defects
- Control of Photoelectrochemical (PEC) Etching by Modification of the Local Electrochemical Potential of the Semiconductor Structure
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- Laser Diode With Tunnel Junction Contact Surface Grating
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- Wavelength-Selective Phosphor Coating for Laser Lighting Devices
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Method for Enhancing Growth of Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- Method for Growing High-Quality Group III-Nitride Crystals
- Near-Infrared, Flip-Chip, TCO-Clad, InGaN Quantum Dot Laser Diode
- Incorporating Temperature-Sensitive Layers in III-N Devices
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Heterogeneously Integrated GaN on Si Photonic Integrated Circuits
- (Al, In,Ga, B)N Device Structures
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- 3D Hole Injectors for InAlGaN Light-Emitting Diodes
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- Enhanced Hole Injection by P-Type Active Region and Lateral Injection in InAlGaN LEDs
- Improved Manufacturing of Solid State Lasers via Patterning of Photonic Crystals
- Multifaceted III-Nitride Surface-Emitting Laser
- Tunable White Light Based on Polarization-Sensitive LEDs
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- III-Nitride VCSEL with a High Indium Content Active Region
- Growth of High-Performance M-plane GaN Optical Devices
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- High Light Extraction Efficiency III-Nitride LED
- III-V Nitride Device Structures on Patterned Substrates
- Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
- Method for Increasing GaN Substrate Area in Nitride Devices
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
GaN-Based Thermoelectric Device for Micro-Power Generation

Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning

LED Device Structures with Minimized Light Re-Absorption

Growth of Planar Semi-Polar Gallium Nitride

UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys

III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture

Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)

Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping

Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD