
Request Information Permalink

Trace-Driven, Just-In-Time Compilation with a New
Application of Static Single Assignment Form
Tech ID: 18785 / UC Case 2006-460-0

BACKGROUND

A decade after Java arrived, there have been improvements in the runtime performance of platform-
independent virtual-machine based software. However, using such machine-independent software on
resource-constrained devices such as mobile phones and PDAs remains a challenge, as both interpretation
and just-in-time compilation of the intermediate VM language run into technological limitations. Running VM
based code strictly in interpreted mode has severe performance overheads, and as a result requires the
device's processor to run at a higher clock speed than if native code were run instead. This leads to an
increased power consumption, reduced battery autonomy, and may require the overall use of more expensive
processors vs. a pure native-code solution.

Just-in-time compilation produces more efficient native code, but the process of getting to that native code
may be very costly for our current resource-constrained embedded devices.

Consequently, distinct embedded just-in-time compilers have emerged, in which trade-offs are made between
resource consumption of the just-in-time compiler and the ultimate execution performance of the code being
run on top of the VM. Embedded just-in-time compilers achieve their results using significantly fewer
resources than their larger counterparts by using simpler algorithms. One example is the use of linear-scan
register allocation instead of a graph-coloring approach, which not only reduces the run-time of the algorithm,
but also greatly diminishes the memory footprint. Embedded just-in-time compilers also tend to use less
ambitious data structures than "unconstrained" compilers-for example, while the use of Static Single
Assignment (SSA) form is fairly standard in large just-in-time compilers running on server-class machines, the
time and memory needed to convert the 10% most frequently executed methods to SSA using traditional
techniques exceeds the resources of most embedded computers.

TECHNOLOGY DESCRIPTION

University researchers have developed a just-in-time compiler that pursues a new dynamic compilation
approach. The compiler is an add-on to the JamVM virtual machine for embedded devices. Unlike other just-
in-time compilers that are "intertwined" with the virtual machine hosting them, ours requires changing no more
than 20 lines of JamVM's source code. The first prototype of the compiler was designed as add-on for Sun's
KVM virtual machine. Porting the compiler to JamVM only required minimal changes to both the University's
new JIT compiler as well as the JamVM source base.

The new JIT runs in a total footprint of 150kB (including code and data) while for regular code still achieving
speedups similar to those of heavyweight JIT compilers. Key to the success of the University approach is
trace-based compilation using SSA. Similar to other systems before, the new "HotpathVM" JIT dynamically
identifies execution traces that are executed frequently-we build dynamic traces from bytecode (which would
have been interpreted anyway) rather than from native code, so that the relative overhead of trace recording
is much less critical. The real novelty of the University system only comes to bear after a hot trace has been
identified: it is then dynamically compiled into native code via a nontraditional application of SSA form, which
we call Trace SSA (TSSA).

In the classical use of SSA, a control flow graph is translated into SSA in its entirety and ! nodes are placed in
control flow join nodes. In this new approach, we differentiate between the values in a trace being compiled,
which are in SSA, and values in the rest of the VM, which are not. The VM explicitly moves data from the
stack and local variables into dedicated SSA variables before any generated native code is called, and

CONTACT

Doug Crawford
doug.crawford@uci.edu
tel: 949-824-2405.

OTHER
INFORMATION

CATEGORIZED AS

» Computer

» Software

RELATED CASES

2006-460-0

Research Translation Group Available Technologies Contact Us

https://techtransfer.universityofcalifornia.edu/NCD/Inquiry.aspx?campus=IR&TechID=18785
https://techtransfer.universityofcalifornia.edu/NCD/18785.html
http://innovation.uci.edu/research-translation-group
https://techtransfer.universityofcalifornia.edu/NCD/Inquiry.aspx?TechID=18785
https://techtransfer.universityofcalifornia.edu/UCtechalerts
https://techtransfer.universityofcalifornia.edu/categories.aspx?id=4
https://techtransfer.universityofcalifornia.edu/categories.aspx?id=42
https://innovation.uci.edu/research-translation-group
https://techtransfer.universityofcalifornia.edu/default.aspx?campus=IR
https://innovation.uci.edu/research-translation-group

explicitly moves non-dead SSA results back onto the stack and local variables on every exit from such an
optimized trace (including side exits). This approach enables the just-in-time compiler to perform aggressive
optimizations on the trace, including moving operations on SSA values across side exit points. Because
instruction traces are essentially linear (they may contain only internal back edges) liveness analysis and
placement of ! nodes are straightforward. This new system also supports fairly sophisticated merging of
multiple traces that have a common ancestor.

APPLICATIONS

This invention can be used for efficient execution of bytecode such as Java or Microsoft.NET, especially on
embedded systems with restricted resources.

PATENT STATUS

Country Type Number Dated Case

United States Of America Issued Patent 8,769,511 07/01/2014 2006-460

5270 California Avenue / Irvine,CA
92697-7700 / Tel: 949.824.2683

© 2009 - 2014, The Regents of the University of
California

Terms of use
Privacy Notice

http://www.google.com/patents/US8769511
https://www.facebook.com/ucicove/
https://www.facebook.com/ucicove/
https://twitter.com/UCICove
https://twitter.com/UCICove
https://www.instagram.com/ucicove/
https://www.instagram.com/ucicove/
https://www.linkedin.com/company/10081276/
https://www.linkedin.com/company/10081276/
https://www.youtube.com/channel/UCl9MCqp7KKyaeNt7c1eOgLg
https://www.youtube.com/channel/UCl9MCqp7KKyaeNt7c1eOgLg
https://ucop.edu/terms/index.html
https://techtransfer.universityofcalifornia.edu/privacy.html

