

Request Information

# **Process for Converting Waste Biomass**

Tech ID: 18696 / UC Case 2008-516-0

#### **ABSTRACT**

A researcher at the University of California, Davis has developed a chemical approach for the total conversion of plant carbohydrates to biofuels and value-added products.

#### **FULL DESCRIPTION**

A researcher at the University of California, Davis has developed a process for converting waste biomass (agricultural, municipal forestry) into 5-chlorofurfural (CMF) in yields approaching 90% of the theoretical. Thus far no other method of biomass deconstruction gives such a high conversion to a simple organic product. The process is completely chemical in nature and inexpensive. Conditions are mild ( $T \le 100~{}^{\circ}$ C) and reaction times are short ( $\le 4~h$ ). By reaction with ethanol or hydrogen, the CMF product is converted into 5-ethoxymethyl furfural and 5-methylfurfural, respectively, both of which are promising biofuel candidates, and the former of which is currently being commercialized in Europe as a diesel additive. By reaction with water, the CMF product is converted into levulinic acid, an industrially important value-added chemical. A secondary product of this process is furfural itself, which derives from the hemicellulose content of plant biomass. Furfural is currently traded as a commercial commodity.

## **APPLICATIONS**

▶ High yield process for the development and manufacture of renewable alternative fuels

#### FEATURES/BENEFITS

- More efficient than conventional ethanol production
- ▶ Direct utilization of cellulose, a prevalent and available source of carbon
- ▶ Derived biofuels are hydrophobic, non-toxic, non-volatile, non-corrosive, clean-burning, and biodegradable
- ▶ Method can be used to derive either biofuels or value added materials from biomass

### **RELATED MATERIALS**

- ▶ Mascal M and Nikitin EB. 2008. Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed Engl. 47(41):7924-6.
- ▶ Mascal M and Nikitin EB. 2009. Towards the Efficient, Total Glycan Utilization of Biomass. ChemSusChem. 2(5):423-426. [Epub ahead of print]

#### **PATENT STATUS**

| Country                  | Туре                 | Number    | Dated      | Case     |
|--------------------------|----------------------|-----------|------------|----------|
| United States Of America | <b>Issued Patent</b> | 7,829,732 | 11/09/2010 | 2008-516 |

#### **CONTACT**

Victor Haroldsen haroldsen@ucdavis.edu tel: 530-752-7717.



# **INVENTORS**

► Mascal, Mark J.

# OTHER INFORMATION

#### **KEYWORDS**

biofuels, sustainable
chemistry, biomass
conversion,
carbohydrates, cellulose,
furfural, furans

#### **CATEGORIZED AS**

- **▶** Biotechnology
  - ▶ Industrial/ Energy
- **▶** Energy
  - Bioenergy
  - ▶ Other

#### **RELATED CASES**

2008-516-0

#### ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Preparation of Furan Fatty Acids from 5-(Chloromethyl) Furfural
- ▶ Synthetic, Non-Scheduled, Cannabinoid for Reducing the Frequency and Severity of Seizure
- ► Azocino[4,5,6-cd]Indoles, Methods for Preparation and Medical Use Thereof: Simplified Synthetic Access to a New Class of 5-HT Ligands
- ► Cannabigerol (CBG) In The Treatment Of Seizures And Epilepsy
- ▶ 1-(Benzo[1,2-b:4,5-b']Difuran-4-yl)alkyl-2-amines and 1-(2,3,6,7-Tetrahydrobenzo[1,2-b:4,5-b']Difuran-4-yl)butan-2-amines as Serotonin Receptor Modulators for Neurodegenerative Disorders

University of California, Davis
Technology Transfer Office

1 Shields Avenue, Mrak Hall 4th Floor, Davis, CA 95616 Tel:

© 2009 - 2017, The Regents of the University of

530.754.8649

California

techtransfer@ucdavis.edu

Terms of use

https://research.ucdavis.edu/technology-

Privacy Notice

transfer/

Fax:

530.754.7620