

# **All-Optical Regenerators**

Tech ID: 11239 / UC Case 2003-538-0

## ABSTRACT

Reconfigurable multi-channel all-optical regenerators.

### **FULL DESCRIPTION**

Researchers at the University of California, Davis have developed an all-optical regenerator based on a Mach-Zehnder interferometer. The device is a novel solution to the old problem of optical signal strength dissipation over long distances. It resolves this issue by receiving weak signals, analyzing the data, and regenerating a new optical carrier to be further transmitted. The device does not rely on flawed amplification techniques that magnify not only the signal but also the background noise. Furthermore, it's all-optical nature eliminates the need for conversion of the optical signal to electrical and back. This has huge advantages over other optical-electrical regenerators because it can be easily scaled to large networks, and the simplicity of the design allows this technology to be implemented on a single integrated chip.

### **APPLICATIONS**

- Boost optical signal strength
- Send data over longer distances with reduced introduction of noise

### **FEATURES/BENEFITS**

- Low signal to noise ratio
- Highly scalable
- Amenable to Mass production

### **PATENT STATUS**

| Country                  | Туре          | Number    | Dated      | Case     |
|--------------------------|---------------|-----------|------------|----------|
| United States Of America | Issued Patent | 7,099,586 | 08/29/2006 | 2003-538 |
|                          |               |           |            |          |
|                          |               |           |            |          |
|                          |               |           |            |          |
|                          |               |           |            |          |
|                          |               |           |            |          |
|                          |               |           |            |          |
|                          |               |           |            |          |
|                          |               |           |            |          |
|                          |               |           |            |          |
|                          |               |           |            |          |

## CONTACT

Andrei G. Chakhovskoi chakhovs@ucdavis.edu tel: 530-754-8642.



### INVENTORS

▶ Yoo, S.J. Ben

#### OTHER INFORMATION

**KEYWORDS** optical, regenerator, Mach, Zehnder, interferometer, signal strength, fiber, optic

#### **CATEGORIZED AS**

#### Communications

- Internet
- ▶ Networking
- ► Wireless
- Computer
  - Hardware
- Optics and
- **Photonics** 
  - All Optics and
    Photonics

**RELATED CASES** 2003-538-0

- ▶ Higher-Speed and More Energy-Efficient Signal Processing Platform for Neural Networks
- Crystal Orientation Optimized Optical Frequency Shifter
- Hyperspectral Compressive Imaging
- Multi-Wavelength, Nanophotonic, Neural Computing System
- Athermal Nanophotonic Lasers
- Ultra-High Resolution Multi-Platform Heterodyne Optical Imaging
- Multi-Wavelength, Laser Array
- Optical Interposers for Embedded Photonics Integration
- Ultrahigh-Bandwidth Low-Latency Reconfigurable Memory Interconnects by Wavelength Routing
- Development of a CMOS-Compatible, Nano-photonic, Laser
- ► Energy Efficient and Scalable Reconfigurable All-to-All Switching Architecture
- Compressive High-Speed Optical Transceiver
- Tensorized Optical Neural Network Architecture
- Silicon Based Chirped Grating Emitter for Uniform Power Emission
- Energy-Efficient All-Optical Nanophotonic Computing
- ▶ 3D Photonic and Electronic Neuromorphic Artificial Intelligence
- Adapting Existing Computer Networks to a Quantum-Based Internet Future

| University of California, Davis        | Tel:                                     | © 2009 - 2018, The Regents of t | the University of |
|----------------------------------------|------------------------------------------|---------------------------------|-------------------|
| Technology Transfer Office             | 530.754.8649                             |                                 | California        |
| 1 Shields Avenue, Mrak Hall 4th Floor, | techtransfer@ucdavis                     | s.edu                           | Terms of use      |
| Davis,CA 95616                         | https://research.ucdavis.edu/technology- |                                 | Privacy Notice    |
|                                        | transfer/                                |                                 |                   |
|                                        | Fax:                                     |                                 |                   |
|                                        | 530.754.7620                             |                                 |                   |