Multilayer Batch Microfabricated Magnetic Shielding

Tech ID: 29825 / UC Case 2018-014-0

Summary

UCLA researchers in the Department of Electrical Engineering have developed a novel batch microfabrication technique for microscale shielding layers, simultaneously pushing the limits of minimum size, maximum shielding factor, flexibility, and cost.

Background

Compact electromagnetic shielding paves the way for a new generation of high precision systems, such as for atomic, molecular, and optical (AMO) technology, where long term stability of atomic sensors is desirable for timing and navigation. Magnetic shields are conventionally machined single or multi-layer structures, resulting in costly and bulky shields best suited for macro-scale enclosures. There exists a need for a microfabrication process that allows cost and time effective fabrication for micro-scale magnetic shields.

Innovation

UCLA researchers in the Department of Electrical Engineering have developed a novel microfabrication technique for rapid and automated alternating electrodeposition between Permalloy and copper baths for batch microfabrication of microscale shielding layers, leveraging parallelism to simultaneously push the limits of minimum size, maximum shielding factor, flexibility, time and cost. The invented microfabrication technique achieved the largest reported shielding factor of 4500, and the first ever chip-scale shielding factor of 100 using batch microfabrication.

Applications

  • Self-contained navigation system 
  • Optical connections 
  • AMO technology 
  • Magnetoresistve random-access memory 
  • Miniaturized magnetic devices

Advantages

  • Large shielding factor 
  • Low cost 
  • Measurable chip-scale shielding factor 
  • Fast fabrication from parallelism

State Of Development

Prototype demonstrated.

Related Materials

Patent Status

Patent Pending

Contact

Learn About UC TechAlerts - Save Searches and receive new technology matches

Inventors

  • Candler, Robert N.

Other Information

Keywords

magnetic shielding, electro-plated shielding, batch microfabrication, chip-scale fabrication, AMO, shielding factor, parallel, electromagnet, atomic sensor, multi-layer

Categorized As