Available Technologies

Find technologies available for licensing from UC Davis.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Compressive High-Speed Optical Transceiver

Researchers at the University of California, Davis have developed an optical transceiver that uses compressive sensing to reduce bandwidth requirements and improve signal resolution.

High-Frequency Imaging and Data Transmission Using a Re-configurable Array Source with Directive Beam Steering

Researchers at the University of California, Davis have developed a reconfigurable radiator array that produces a high frequency directed beam via uninterrupted, scalable, electronic beam steering.

Reducing Electrical Current Variations in Phase-Locked Loop Systems

Researchers at the University of California, Davis have developed a method of eliminating electrical current mismatches in the charge pumps of phase-locked loops (PLL) systems - thereby increasing their power efficiency and phase detection capabilities.

Phased-Locked Loop Coupled Array for Phased Array Applications

Researchers at the University of California, Davis have developed a phased-locked loop coupled array system capable of generating phase shifts in phased array antenna systems - while minimizing signal losses.

Embedded Power Amplifier

Researchers at the University of California, Davis have developed an amplifier technology that boosts power output in order to improve data transmission speeds for high-frequency communications.

Absorptive Microwave Bandpass Filters

Researchers at the University of California, Davis have developed absorptive bandpass filters that enable improved passband flatness and good impedance matching both in-band and out-of-band.

Development of a CMOS-Compatible, Nano-photonic, Laser

Researchers at the University of California, Davis have developed a new class of lasers and amplifiers that uses a CMOS-compatible electronics platform - and can also be applied to nano-amplifiers and nano-lasers applications.

Deep Learning Network and Compression Framework over Limited Bandwidth Network Links

Researchers at the University of California, Davis have developed a technology that enables the quantization of discrete wavelet transformed coefficients to reduce bandwidth for cloud-based storage applications. 

Athermal Nanophotonic Lasers

Researchers at the University of California, Davis have developed a nanolaser platform built from materials that do not exhibit optical gain.

Photonic-Electronic, Real-Time, Signal Processing

Researchers at the University of California, Davis have developed a method for ultra-wideband and highly precise, photonic-electronic, signal processing. This technology is capable of high-speed, real-time signal correlation/processing by exploiting RF-photonics, ultra-stable optical frequency combs and high precision electronics.

Energy Efficient and Scalable Reconfigurable All-to-All Switching Architecture

Researchers at the University of California, Davis have developed a hierarchical optical switch architecture that is low latency and energy efficient.

Multi-Wavelength, Laser Array

Researchers at the University of California, Davis have developed a multi-wavelength, laser array that generates more precise wavelengths than current technologies. The array also delivers narrow linewidths and can operate athermally.

Higher-Speed and More Energy-Efficient Signal Processing Platform for Neural Networks

Researchers at the University of California, Davis have developed a nanophotonic-based platform for signal processing and optical computing in algorithm-based neural networks that is faster and more energy-efficient than current technologies.

Nonreciprocal Reflectarray Antennas based on time-modulation

Researchers at the University of California, Davis have developed nonreciprocal and reconfigurable reflectarray antennas based on time-modulation with demonstrated advantages over the state of the art.

Nonreciprocal And Reconfigurable Phased-Array Antennas

Researchers at the University of California, Davis have developed nonreciprocal and reconfigurable phased-array antennas with demonstrated advantages over competing, current technologies.

Field Effect Bipolar Transistor

Researchers at the University of California have developed a field effect bipolar transistor (FEBT) on a unilateral silicon substrate using CMOS/BiCMOS technology for use in switching and amplification of electric signals and as a 1-transistor memory cell for storing information in a suitable circuit.

Nonlinearity Factorization for Up-Conversion Mixer Linearity Analysis

Researchers at the University of California, Davis have developed a nonlinearity factorization scheme/method to fully characterize the time-varying behavior of switching stages with low intermediate frequency (IF).

Optical Interposers for Embedded Photonics Integration

Researchers at the University of California, Davis and NHanced Semiconductors have developed a new optical interposer solution for embedded photonics that have higher energy efficiency than the current pluggable optics solutions

Quarter-Rate Serial Link Receiver with Low Aperture Delay Samplers for High Data Rate Applications

Researchers at the University of California, Davis have developed a quarter-rate serial link receiver with low aperture delay samplers for use in high-speed serial link interconnects in network systems. This receiver decreases the parasitic capacitances that result from threshold adjustments and can drastically decrease the amount of power required for high data rate applications.

Passive Coupling Balance Scheme for Long Traveling Complex Differential Signals

Researchers at the University of California, Davis have developed a passive coupling balance technique to suppress signal mismatches for long traveling N-pair complex differential signals.

Fabrication Method for Side Viewing Miniature Optical Elements with Free-Form Surface Geometry

Researchers at the University of California, Davis have developed a fabrication method for free-form reflective side viewing miniature optical elements to focus and reflect light with minimal chromatic aberrations.

Silicon Based Chirped Grating Emitter for Uniform Power Emission

Researchers at the University of California, Davis, have developed a chirped grating emitter with ultra-sharp instantaneous field of view (IFOV) for optical beam-steering applications.

Energy-Efficient All-Optical Nanophotonic Computing

Researchers at the University of California, Davis, have developed a new computing and signal processing platform based on nanophotonics and nanoelectronics to decrease power consumption and improve overall computing speed with all-optical inputs and outputs.

3D Magnetic Topological Structures for Information Storage

Researchers at the University of California, Davis, have developed a new way to directly create 3-dimensional topological magnetic structures that allows for efficient information storage with potentially low energy dissipation.

Wireless Data Transmission with Efficient Radio Resource Usage

Researchers at the University of California, Davis have developed a robust header compression (ROHC) system to enable internet protocol data transmission with efficient radio resource usage over a wireless communication link.

  • Go to Page: