Available Technologies

Find technologies available for licensing from UC Davis.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Digital Meter-On-Chip with Microfluidic Flowmetry

Researchers at the University of California, Davis have developed a microfluidic flowmetry technology that achieves on-chip measurement with ultrahigh precision across a wide tunable range.

Rapid and Low-cost Sensor for Measuring Volatile Compounds in Nuts and Oils

Researchers at the University of California, Davis have developed a sensor for measuring food spoilage of nuts, seeds, and oils. It measures volatile organic compounds as a biomarker of food spoilage through a simple device in only three minutes.

A Combined Raman/Single-Molecule Junction System For Chemical/Biological Analysis

Researchers at the University of California, Davis have developed a device for multi-dimensional data extraction at the molecular level to allow one to simultaneously detect the presence of a single-molecule electrically, and to extract a chemical fingerprint to identify that molecule optically.

Robotic Integrated Raman Scanning Optical Head

Researchers at the University of California, Davis have developed an invention that utilizes an integrated Raman scanning head and machine vision for high throughput chemical analysis of liquid biopsy samples.

Non-invasive Sleep Quality Measuring Device

Researchers at the University of California, Davis have developed a sleep quality measuring device to measure waking electroencephalogram (EEG) test to determine the adequacy of sleep

Modular Piezoelectric Sensor Array with Beamforming Channels for Ultrasound Imaging

Researchers at the University of California, Davis have developed a large area sensor array for ultrasound imaging systems that utilizes high-bandwidth piezoelectric sensors and modular design elements.

Compressive High-Speed Optical Transceiver

Researchers at the University of California, Davis have developed an optical transceiver that uses compressive sensing to reduce bandwidth requirements and improve signal resolution.

Low-Cost, Multi-Wavelength, Camera System that Incorporates Artificial Intelligence for Precision Positioning

Researchers at the University of California, Davis have developed a system consisting of cameras and multi-wavelength lasers that is capable of precisely locating and inspecting items.

Medical/Surgical Instrument-Bending Device

Researchers at the University of California, Davis have developed a device that allows needles to be reliably and easily bent to a range of specified and reproducible angles. The device also enables protection of the needle tip and the maintenance of needle sterility during bending.

Fetal Oximetry Measurement via Maternal Transabdominal Spectroscopy

Researchers at the University of California, Davis have developed a non-invasive, near-infrared, spectroscopy technique that measures fetal oxygen saturation via the maternal abdomen.

Reducing Electrical Current Variations in Phase-Locked Loop Systems

Researchers at the University of California, Davis have developed a method of eliminating electrical current mismatches in the charge pumps of phase-locked loops (PLL) systems - thereby increasing their power efficiency and phase detection capabilities.

Embedded Power Amplifier

Researchers at the University of California, Davis have developed an amplifier technology that boosts power output in order to improve data transmission speeds for high-frequency communications.

Microfluidic Dispenser for Automated, High-Precision, Liquids Handling

Researchers at the University of California, Davis have developed a robotic dispensing interface that uses a microfluidic-embedded container cap – often referred to as a microfluidic Cap-to-Dispense or μCD - to seamlessly integrate robotic operations into precision liquids handling.

Predictive Controller that Optimizes Energy and Water Used to Cool Livestock

Researchers at the University of California, Davis have developed a controller that applies environmental data to optimizing operations of livestock cooling equipment.

Non-invasive Monitoring of Cell Culture Health via Sampling of Bioreactor VOC Emissions

Researchers at the University of California, Davis have developed a device that can capture, analyze, and monitor volatile organic compounds (VOCs) emitted by cell cultures through a bioreactor exhaust line – thus eliminating the need to contact the cell culture directly.

Nanocellulose-Assisted Exfoliation of Graphite to Few Layer Graphene

Researchers at the University of California, Davis have developed a high-yield method that utilizes the unique properties of cellulose nanofibrils (CNFs) to fabricate high-quality graphene from bulk graphite. This graphene can then be fabricated into graphene nanopapers, which have unique moisture and heat-sensing capabilities for applications in “smart” electronic devices and other uses.

Flavonol Profile as a Sun Exposure Assessor for Grapes

Researchers at the University of California, Davis have developed a solar radiation assessment method for grapes that uses a flavonol profile. This method can be done using either HPLC or through the computer processing of the absorption spectra of a purified flavonol extract via a purification kit.

Non-Living Edible Surrogates For Process Validation Food Processing Plants

Researchers at the University of California, Davis have developed a surface sanitation validation system that utilizes a non-living edible surrogate to potentially help determine food processing efficacy.

Conductive and Elastic Nanocellulose Aerogels

Researchers at the University of California, Davis have developed conductive nanocellulose aerogels as building blocks for mechanical strain sensors and coaxial aerogel fibers for cryo- and thermo-protective insulation.

Method for Simultaneously Measuring In- and Out-of-Plane Surface Magnetic Properties of Thin Films

Researchers at the University of California, Davis have developed a method for measuring in-plane and out-of-plane surface magnetic properties of thin films.

Combined Individual Nanomaterial Enhancements for Total X-Ray Enhancement

Researchers at the University of California, Davis have developed a method to combine individual nanomaterial enhancements to achieve greater X-ray enhancement.

Digital Droplet Microflowmetry Enabled by Interfacial Instability

Researchers at the University of California, Davis have developed a non-thermal, digital microfluidic flowmeter with the ability to measure ultralow flow rates.

Passive Wideband Interferometer Enabled Error Feedback Transmitter

Researchers at the University of California, Davis have designed a high spectral purity error feedback transmitter.

Crystal Orientation Optimized Optical Frequency Shifter

Researchers at the University of California, Davis have developed an optimized frequency shifter and polarization converter for power reduction.

Detection of Concealed Damage in Raw Nuts

Researchers at the University of California, Davis have developed a nondestructive method for identifying raw nuts with concealed damage.

  • Go to Page: