Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Berkeley.

Learn more about UC TechAlerts - Save your searches and get notified of new UC technologies

COMPOSITIONS AND METHODS FOR IDENTIFYING HOST CELL TARGET PROTEINS FOR TREATING RNA VIRUS INFECTIONS

Viral infection is a multistep process involving complex interplay between viral life cycle and host immunity. One defense mechanism that hosts use to protect cells against the virus are nucleic-acid-mediated surveillance systems, such as RNA interference-driven gene silencing and CRISPR-Cas mediated gene editing. Another important stage for host cells to combat virus replication is translational regulation, which is particular important for the life cycle of RNA viruses, such as Hepatitis C virus and Coronavirus.  While efforts to characterize structural features of viral RNA have led to a better understanding of translational regulation, no systematical approaches to identify important host genes for controlling viral translation have been developed and little is known about how to regulate host-virus translational interaction to prevent and treat infections caused by RNA viruses.   UC Berkeley researchers have developed a high-throughput platform using CRISPR-based target interrogation to identify new therapeutics targets or repurposed drug targets for blocking viral RNA translation.  The new kits can also be used to identify important domains within target proteins that are required for regulating (viral RNA translation) and can inform drug design and development for treating RNA viruses.

Decorating Chromatin for Precise Genome Editing Using CRISPR

A novel fusion construct that fuses Cas9 to a truncated version of human PRDM9 with the purpose of improving precise genome editing via homologous direceted repair (HDR). PRDM9 is a protein that deposits histone marks H3K4me3 and H3K36me3 simultaneously during meiosis to mark recombination hot spots where crossover occurs and is resolved by homologous recombination. H3K36me3 has also been demonstrated to be required upstream of homologous recombination repair after double stranded breaks (DSBs) and during V(D)J recombination for adaptive immunity. Recent evidence suggests PRDM9 acts as a pioneer factor opening closed chromatin. The newly engineered PRDM9C-Cas9 fusion construct shows increased HDR and decreased non-homologous end joining mediated insertions and deletions (indels).

Design Random Heteropolymer To Transport Proton Selectively And Rapidly

Despite decades of effort, it remains challenging, if not impossible, to achieve similar transport performance similar to natural channels. Inspired by the known crystal structures of transmembrane channel proteins, protein sequence-structure-transport relationships have been applied to guide material design. However, producing both molecularly defined channel sizes and channel lumen surfaces that are chemically diverse and spatially heterogeneous have been out of reach. We show that a 4-monomer-based random heteropolymer (RHP) exhibits selective proton transport at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in the RHP leads to well-modulated segmental heterogeneity in hydrophobicity, which facilitates the single RHP chains to insert into lipid bilayers. This in turn produces rapid and selective proton transport, despite the sequence variability among RHP chains. We have demonstrated the importance of:the adaptability enabled by the statistical similaritythe modularity afforded by monomer chemical diversity to achieve uniform behavior in heterogeneous systems. 

Small Cas9 Protein Inhibitor

A new protein that is able to inhibit the Cas9 protein from Streptococcus iniae (SinCas9). SinCas9 is capable of robust DNA cleavage and offers an immune orthogonal Cas9 for use in gene editing in human cells. The inhibitor is a small protein from a phage and is capable of inhibiting SinCas9 activity in vitro and in human cell genome editing experiments.

Novel Phage CRISPR-Cas Effectors and Uses Thereof

UC Berkeley researchers have discovered a novel family of proteins denoted Cas12L within the Type V CRISPR Cas superfamily distantly related to CasX, CasY and other published type V sequences.  These Cas12L proteins utilize a guide RNA to perform RNA-directed cleavage of DNA.

Single Conjugative Vector for Genome Editing by RNA-guided Transposition

The inventors have constructed conjugative plasmids for intra- and inter-species delivery and expression of RNA-guided CRISPR-Cas transposases for organism- and site-specific genome editing by targeted transposon insertion. This invention enables integration of large, customizable DNA segments (encoded within a transposon) into prokaryotic genomes at specific locations and with low rates of off-target integration.

Modulation Of Engineered Immune Cell Receptor Translation Using Noncoding Sequence Elements

It would be beneficial to control the expression of engineered immune cell receptors for use in cell-based cancer immunotherapy, known as adoptive cell therapy (ACT), or in other cell-based therapies using engineered regulatory T cells (engineered Tregs) to treat immune dysfunction such as autoimmunity or organ transplant rejection. In these therapies, immune cells such as T cells or natural killer (NK) cells are genetically modified to express an engineered cell surface receptor that directs these immune cells to tumor cells or specific tissues expressing a target ligand recognized by the receptor, thereby leading to tumor cell destruction (ACT) or moderated immune reaction (engineered Tregs). However, it has been found that ACT can suffer from severe toxic side effects due to overactivation of engineered immune cells used in ACT such as CAR T-cells, due to signaling by the engineered cell surface receptor. Conversely, overactive immune cells can become exhausted and lose efficacy over time. Present attempts to regulate CAR expression do not account for control exerted at the level of protein synthesis. It would therefore be useful to be able to tune the activity of immune cells engineered for ACT or for treatment of immune dysfunction, by either increasing or decreasing the protein synthesis of the engineered immune cell surface receptor, i.e. the engineered TCR or CAR. This research describes compositions and methods for selectively increasing or decreasing the protein synthesis of engineered immune cell surface receptors using noncoding sequences in the 3’-untranslated region (3’-UTR) of messenger RNAs (mRNAs) encoding the engineered TCRs or CARs. These 3’-UTR sequences are sensitive to regulation by translation initiation factor eIF3 and can be used to modulate the strength and time duration of TCR or CAR protein synthesis.  

Temporal Control over DNA-Patterned Signaling Ligands In Vitro Using Sequence-Targeting Nucleases

UC Berkeley researchers have created a new technique that can rapidly “print” two-dimensional arrays of cells and proteins that mimic a wide variety of cellular environments in the body, be it the brain tissue surrounding a neural stem cell, the lining of the intestine or liver or the cellular configuration inside a tumor.  In the new technique, each cell or protein is tethered to a substrate with a short string of DNA. While similar methods have been developed that attach tethered cells or proteins one by one.  By repeating the process, up to 10 different kinds of cells or proteins can be tethered to the surface in an arbitrary pattern. This technique could help scientists develop a better understanding of the complex cell-to-cell messaging that dictates a cell’s final fate, from neural stem cell differentiating into a brain cell to a tumor cell with the potential to metastasize to an embryonic stem cell becoming an organ cell.

Rheological Tuning of the Crystal Growth

Solutions of shear-thinning polymers are known to decrease in viscosity as a shear force is applied to the solution. In this work, the inventors show that by pre-shearing a shear-thinning polymer solution mixed with a precursor solution of a semiconducting crystal we can tune the size and morphology of the growing crystals, which governs the optoelectronic properties of the formed crystals. By pre-shearing the solution we are able to lower the viscosity of the solution, which plays a key role in the liquid phase processing (eg., coating processes). By forming a thinner, low-viscosity coating, we are able to tune the nucleation and growth rate of the crystals to form crystals that are smaller and more uniformly distributed in size, leading to a uniform and conformal coating. This approach allows us to coat a uniform layer of semiconducting crystals, which is necessary for developing functional optoelectronic devices.

Enzymatic Modification Of Amino Acids And Their Products

The inventors report the structural characterization of BesD, a recently discovered radical halogenase from the FeII/-ketogluturate family that chlorinates the free amino acid lysine. They also identify and characterize additional halogenases that produce mono- and di-chlorinated as well as brominated and azidated amino acids. The substrate selectivity of this new family of radical halogenases takes advantage of the central role of amino acids in metabolism and enables engineering biosynthetic pathways to afford a wide variety of compound classes, such as heterocycles, diamines, -keto acids, and peptides. 

Improved Cas12a Proteins for Accurate and Efficient Genome Editing

Mutated versions of Cas12a that remove its non-specific ssDNA cleavage activity without affecting site-specific double-stranded DNA cutting activity. These mutant proteins, in which a short amino acid sequence is deleted or changed, provide improved genome editing tools that will avoid potential off-target editing due to random ssDNA nicking.

Illumination Device for Dynamic Spatiotemporal Control of Photostimulation

A programmable LED device that illuminates multiple spatial locations (termed wells) with user-defined light patterns whose intensity can be modulated as a function of space and time. The devices are used for optogenetic stimulation of tissue culture plates (24-well and 96-well) kept in a heated and humidified tissue culture incubator, as well as photopatterning of hydrogels. In brief, light from LEDs passes through optical elements that ensure uniform illumination of each well. Parameters of the optical system, such as LED configuration, optical diffuser elements, materials, and geometry, were modeled and optimized using the optical ray tracing software Zemax OpticStudio. An electronics subsystem allows programmed control of illumination intensity and temporal sequences, with independent control of each well. Spatial precision is conveyed through a photomask attached to the culture plate. The hardware design also includes a cooling system and vibration isolation to reduce heating and damage to the sample. Lastly, a graphical user interface (GUI) was used to wirelessly program the illumination intensity and temporal sequences for each well. The devices can thus illuminate 24 independent channels with visible, NIR, or UV light with intensity ranges of 0 to 20-100 microwatts per millimeter-squared with 16-bit intensity resolution, and a temporal resolution of 1 millisecond and spatial resolution of 100 microns. In summary, the device allows uniform illumination of multiple wells for multiplexed photoactivation or photopolymerization of various substrates (light-responsive bacterial or mammalian cells grown in tissue culture, hydrogels, dyes, etc) with user-defined patterns. The device can be combined with a robotic handler, microscope, spectrometer, etc, to enable high-throughput illumination and simultaneous recording of the sample.

Discovery Of A Novel Protease With High Specificity Toward Serine Side Chains

Pyrroloquinoline quinone (PQQ), a prominent redox cofactor in a variety of prokaryotes, is produced from a ribosomally synthesized and post-translationally modified peptide PqqA via a pathway comprised of four conserved proteins PqqB-PqqE. These four proteins are now fairly well characterized and span Radical SAM activity (PqqE), aided by a peptide chaperone (PqqD), a dual hydroxylase (PqqB), and an eight electron, eight proton oxidase (PqqC). A full description of this pathway has been hampered by a lack of information regarding a protease/peptidase required for the excision of an early, cross-linked di-amino acid precursor to PQQ.    UC Berkeley researchers have isolated and characterized a two component, heterodimer protein that is able to rapidly catalyze cleavage of PqqA into smaller peptides.  The UC researchers have developed: novel proteases that can cut peptide bonds both N- and C- terminal to the amino acid serine; compositions comprising such proteases; and methods of use, including to assay the extent, position, and time course of protein phosphorylation at serine side chains. 

Targeted Ionophore-Based Metal Supplementation

Metal deficiency is implicated in a variety of genetic, neurological, cardiovascular, and metabolic diseases. Current approaches for addressing metal deficiency rely on generic metal ion supplementation, which can potentially lead to detrimental off-target metal accumulation in unwanted tissues and subsequently trigger oxidative stress and damage cascades. The inventors have developed a new modular platform for delivering metal ions in a tissue-specific manner and demonstrate liver-targeted copper supplementation as a proof of concept of this strategy. Specifically, the inventors designed and synthesized a N-acetylgalactosamine-functionalized ionophore, Gal-Cu(gtsm), to serve as a copper-carrying “Trojan Horse” that targets liver-localized asialoglycoprotein receptors (ASGPRs) and releases copper only after being taken up by cells, where the reducing intracellular environment triggers copper release from the ionophore. The inventors utilized a combination of bioluminescence imaging and inductively-coupled plasma mass spectrometry assays to establish ASGPR-dependent copper accumulation with this reagent in both liver cell culture and mouse models with minimal toxicity. The modular nature of this synthetic approach presages that this platform can be expanded to deliver a broader range of metals to specific cells, tissues, and organs in a more directed manner to treat metal deficiency in disease. This patent broadly covers directed metal delivery to select organs, tissues, and organelles.

Cas12-mediated DNA Detection Reporter Molecules

Class 2 CRISPR-Cas systems are streamlined versions in which a single Cas protein (an effector protein, e.g., a type V Cas effector protein such as Cpf1) bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that continues to revolutionize the field of genome manipulation.    Cas12 is an RNA-guided protein that binds and cuts any matching DNA sequence. Binding of the Cas12-CRISPR RNA (crRNA) complex to a matching single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) molecule activates the protein to non-specifically degrade any ssDNA in trans. Cas12a-dependent target binding can be coupled to a reporter molecule to provide a direct readout for DNA detection within a sample.  UC Berkeley researchers have developed compositions, systems, and kits having labeled single stranded reporter DNA molecules that provide a sensitive readout for detection of a target DNA. 

FIIND-CARD Proteins as Biosensors

The inventors propose the use of FIIND-CARD proteins as biosensors. The inventors have discovered that the FIIND-CARD module can be activated upon proteasome-mediated degradation. After activation by proteasome-mediated degradation, an active FIIND-CARD fragment is released. The native form of this fragment recruits and activates a potent cell death response, but the inventors propose that it could also be engineered to activate additional reporter activities (e.g., fluorescence). They propose that by connecting the FIIND-CARD module to bait proteins of interest, it will be possible to sensitively screen for upstream activators that target the bait protein for degradation. Upstream activators may include E3 ligases or proteases or anything that results in the bait protein being destabilized. The system could also be deployed as a screening platform to develop PROTAC small molecules that initiate degradation of host target proteins. The inventors believe that the FIIND-CARD module is a flexible and widely adaptable in cell screening platform for the discovery of novel modulators of cellular enzymatic activities.

Tissue Projection Electrophoretic Separation Of Protein

A range of related immunoblotting methods have enabled the identification and semi-quantitative characterization of e.g., DNA (Southern blot), RNA (northern blot), proteins (Western blot), and protein-protein interactions (far-western blot); by coupling biomolecule separations and assays.  However, there are a wide number of alternative splicing events, post-translational modifications, and co-translational modifications (e.g., phosphorylation, glycosylation, and protein cleavage) that give rise to proteoforms and protein complexes with distinct function and subsequent cell behavior that cannot be analyzed with conventional methods such as immunohistochemistry (IHC). Analytical variability (lack of isoform- or complex-specific antibody probes), biological variability (small cell subpopulations diluted in bulk analysis), and lack of multiplexing (measurement of multiple proteins from the same tissues) can all render proteoforms and protein complexes undetectable by current technologies.     UC Berkeley researchers have created electrophoretic separation platform that is capable of measuring proteoforms and protein complexes lacking specific antibodies alongside spatial information, at the cellular level.  This platform maintains the architecture of 2D tissue slices while projecting a protein separation in the 3rd dimension. The platform mitigates artifacts induced by tissue dissociation processes, as the intact tissue is lysed and subject to a protein separation. The platform is also compatible with differential detergent fractionation methods for further separation of proteins (e.g. separation by localization within the cell, by cell type, by protein complex formation, or by cellular vs. matrix proteins), opening the door for a novel, refined classification taxonomy using enhanced biomarker signatures for diagnostics and treatment selection in oncology among a wide range of additional future applications.  

Enhanced Speed Polymerases For Sanger Sequencing

Sanger sequencing has remained a dominant DNA sequencing methodology for molecular biology research and development for many years.  The main commercially available DNA polymerase developed for Sanger sequencing has a slow extension speed and has difficulties sequencing secondary structures such as GC rich regions, hairpins, mono- and poly-nucleotide repeats.  While specialized plastics and reductions in reaction volumes to improve Sanger sequencing reaction times, any gains in sequencing assay performance (e.g., sequencing time or throughput) are offset by increased costs associated with a terminator reagent.  During the last two decades, further refinement and advancement of suitable DNA polymerases to improve polymerization speeds during Sanger sequencing have been limited.  Thus, there remains a need for improved DNA polymerases suitable for Sanger sequencing that possess enhanced elongation speeds, and the ability to sequence through secondary structures present in DNA templates.    A UC Berkeley researchers has discovered compositions and methods for preparing and using Taq DNA polymerases with improved Sanger sequencing elongation sequencing rates as compared to commercially available Sanger sequencing reagents.  

Protein-Coated Microparticles For Protein Standardization In Single-Cell Assays

Single-cell analysis offers powerful capabilities of identification of rare sub-populations of cells, understanding heterogeneity of cancerous tumors, and tracking cell differentiation and reprogramming. Despite great potentials for uncovering new biological systems and targeting diseases with precision medicine, single-cell approaches are composed of complex device processes that can cause bias in measurement.  In deep sequencing, technical variation in single cell expression data occurs during capture and pre-amplification steps. Similarly, in single-cell protein assays, technical variability can obscure functionally relevant variance.    To better control protein measurement quality in single-cell assays, researchers at the University of California, Berkeley developed a novel method to loading and release protein standard. This method utilizes the surface of modified and functionalized microparticles as vehicles to capture target proteins with desired concentrations. Chelation-assisted click chemistry is applied to demonstrate that protein standards with different molecular masses can be loaded and bounded in a single-cell protein assay. Microparticles are introduced into single-cell devices by either passive gravity, magnetic attraction, or other physicochemical forces. These protein standards from microparticles provide a reference to measure protein mass sizes from individual cells and a quality control for any biases in device fabrication, cell lysis, protein solubility, protein capture, and protein readouts (i.e. antibody probing).   

Endoribonucleases For Rna Detection And Analysis

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Bacteria and archaea possess adaptive immune systems that rely on small RNAs for defense against invasive genetic elements. CRISPR (clustered regularly interspaced short palindromic repeats) genomic loci are transcribed as long precursor RNAs, which must be enzymatically cleaved to generate mature CRISPR-derived RNAs (crRNAs) that serve as guides for foreign nucleic acid targeting and degradation. This processing occurs within the repetitive sequence and is catalyzed by a dedicated CRISPR-associated (Cas) family member in many CRISPR systems.  Endoribonucleases that process CRISPR transcripts are bacterial or archaeal enzymes capable of catalyzing sequence- and structure- specific cleavage of a single- stranded RNA. These enzymes cleave a specific phosphodiester bond within a specific RNA sequence.  UC Berkeley researchers discovered variant Cas endoribonucleases, nucleic acids encoding the variant Cas endoribonucleases, and host cells genetically modified with the nucleic acids that can be used, potentially in conjunction with Cas9, to detect a specific sequence in a target polyribonucleotide and of regulating production of a target RNA in a eukaryotic cell.  For example, it was found that the variant Cas endoribonuclease has an amino acid substitution at a histidine residue such that is is enzymatically inactive in the absence of imidazole and is activatable in the presence of imidazole.  

Printed All-Organic Reflectance Oximeter Array

A flexible reflectance oximeter array (ROA) composed of printed organic light-emitting diodes (OLEDs) and organic photodiodes (OPDs), which senses reflected light from tissue to determine the oxygen saturation. Since reflected light is used as the signal, the sensor array can be used beyond the conventional sensing locations. We implemented the ROA to measure SpO2 on the forehead with 1.1% mean error and to create two-dimensional (2D) oxygenation maps of the adult forearm under pressure cuff-induced ischemia. Due to the mechanical flexibility, 2D oxygenation mapping capability, and the ability to place the sensor in diverse places, the ROA is promising for novel medical sensing applications such as mapping oxygenation in tissues, wounds, or transplanted organs.

Type V CRISPR/CAS Effector Proteins for Cleaving ssDNA and Detecting Target DNA

Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Class 2 CRISPR–Cas systems (e.g., type V CRISPR/Cas systems such as Cas12 family systems) are characterized by effector modules that include a single effector protein. For example, in a type V CRISPR/Cas system, the effector protein - a CRISPR/Cas endonuclease (e.g., a Cas12a protein) - interacts with (binds to) a corresponding guide RNA (e.g., a Cas12a guide RNA) to form a ribonucleoprotein (RNP) complex that is targeted to a particular site in a target nucleic acid via base pairing between the guide RNA and a target sequence within the target nucleic acid molecule.  Thus, like CRISPR-Cas9, Cas12 has been harnessed for genome editing based on its ability to generate targeted, double-stranded DNA (dsDNA) breaks.   UC Berkeley researchers have discovered that RNA-guided DNA binding unleashes indiscriminate single-stranded DNA (ssDNA) cleavage activity by Cas12a that completely degrades ssDNA molecules. The researchers found that target-activated, non-specific ssDNase cleavage is also a property of other type V CRISPR-Cas12 enzymes. By combining Cas12a ssDNase activation with isothermal amplification, the researchers were able to achieve attomolar sensitivity for DNA detection.  For example, rapid and specific detection of human papillomavirus in patient samples was achieved using these methods and compositions.   

Class 2 CRISPR/Cas COMPOSITIONS AND METHODS OF USE

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} The CRISPR-Cas system is now understood to confer bacteria and archaea with acquired immunity against phage and viruses. CRISPR-Cas systems consist of Cas proteins, which are involved in acquisition, targeting and cleavage of foreign DNA or RNA, and a CRISPR array, which includes direct repeats flanking short spacer sequences that guide Cas proteins to their targets.  Class 2 CRISPR-Cas systems are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that is revolutionizing the field of genome manipulation, so there is a need in the art for additional Class 2 CRISPR/Cas systems (e.g., Cas protein plus guide RNA combinations).   Researchers have shown that Class 2 CRISPR Cas protein and their variants can be used in a complex for specific binding and cleavage of DNA. The Class 2 CRISPR Cas complex utilizes a novel RNA and a guide RNA to perform double stranded cleavage of DNA and the complex is expected to have a wide variety of applications in genome editing and nucleic acid manipulation. 

A Dual-RNA Guided CasZ Gene Editing Technology

Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The CRISPR-Cas system is now understood to confer bacteria and archaea with acquired immunity against phage and viruses. CRISPR-Cas systems consist of Cas proteins, which are involved in acquisition, targeting and cleavage of foreign DNA or RNA, and a CRISPR array, which includes direct repeats flanking short spacer sequences that guide Cas proteins to their targets.  Class 2 CRISPR-Cas systems are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that is revolutionizing the field of genome manipulation, so there is a need in the art for additional Class 2 CRISPR/Cas systems (e.g., Cas protein plus guide RNA combinations).   UC Berkeley researchers discovered a new type of Cas protein, CasZ.  (CasZ) is short compared to previously identified CRISPR-Cas endonucleases, and thus use of this protein as an alternative provides the advantage that the nucleotide sequence encoding the protein is relatively short.  The researchers have shown that the CRISPR CasZ protein and its variants can be used in a complex for specific binding and cleavage of DNA. The CRISPR CasZ complex utilizes a novel RNA and a guide RNA to perform double stranded cleavage of DNA and the complex is expected to have a wide variety of applications in genome editing and nucleic acid manipulation. 

CRISPR CASY COMPOSITIONS AND METHODS OF USE

96 Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Calibri",sans-serif; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} The CRISPR-Cas system is now understood to confer bacteria and archaea with acquired immunity against phage and viruses. CRISPR-Cas systems consist of Cas proteins, which are involved in acquisition, targeting and cleavage of foreign DNA or RNA, and a CRISPR array, which includes direct repeats flanking short spacer sequences that guide Cas proteins to their targets.  Class 2 CRISPR-Cas systems are streamlined versions in which a single Cas protein bound to RNA is responsible for binding to and cleavage of a targeted sequence. The programmable nature of these minimal systems has facilitated their use as a versatile technology that is revolutionizing the field of genome manipulation, so there is a need in the art for additional Class 2 CRISPR/Cas systems (e.g., Cas protein plus guide RNA combinations).   Previously UC Berkeley researchers discovered a new type of Cas protein, CasY (also referred to as Cas 12d protein).  CasY is short compared to previously identified CRISPR-Cas endonucleases, and thus use of this protein as an alternative provides the advantage that the nucleotide sequence encoding the protein is relatively short.  CasY utilizes a guide RNA to perform double stranded cleavage of DNA. The researchers introduced CRISPR-CasY into E. coli, finding that they could block genetic material introduced into the cell.  Further research results indicated that CRISPR-CasY operates in a manner analogous to CRISPR-Cas9, but utilizing an entirely distinct protein architecture containing different catalytic domains.   CasY is also expected to function under different conditions (e.g., temperature) given the environment of the organisms that CasY was expressed in.  Similar to CRISPR Cas9, CasY enzymes are expected to have a wide variety of applications in genome editing and nucleic acid manipulation. Recent studies have shown that the CasY complex utilizes a novel RNA, in addition to the guide RNA, to perform double stranded cleavage of DNA. Similar to CRISPR Cas9, CasY enzymes are expected to have a wide variety of applications in genome editing and nucleic acid manipulation.   

  • Go to Page: