Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Berkeley.

Learn more about UC TechAlerts - Save your searches and get notified of new UC technologies

Multi-Agent Navigation And Communication Systems

The field of autonomous transportation is rapidly evolving to operate in diverse settings and conditions. However, as the number of autonomous vehicles on the road increases the complexity of the computations needed to safely operate all of the autonomous vehicles grows rapidly. across multiple vehicles, this creates a very large volume of computations that must be performed very quickly (e.g., in real or near-real time).   Thus, treating each autonomous vehicle as an independent entity may result in inefficient use of computing resources, as many redundant data collections and computations may be performed (e.g., two vehicles in close proximity may be performing computations related to the same detected object). To address this issue, researches at UC Berkeley proposed algorithms for the management and exchange of shared information across nearby and distant vehicles.According to the proposed arrangement, autonomous vehicles may share data collected by their respective sensor systems with other autonomous vehicles and adjust their operations accordingly in a manner that is more computationally efficient. This can not only increase safety but at the same time reduce computational load required by each individual vehicle.

Temporal And Spectral Dynamic Sonar System For Autonomous Vehicles

The field of autonomous transportation is rapidly evolving to operate in diverse settings and conditions.  Critical to the performance of autonomous vehicles is the ability to detect other objects in the autonomous vehicle’s vicinity and adjust accordingly. To do so, many autonomous vehicles utilize a variety of sensors, including sonar. Although these sensor systems have been shown to improve the safety of autonomous vehicles by reducing collisions, the sensor systems tend to be computationally inefficient.  For instance, the sensor systems may generate large volumes of data that must be processed quickly (e.g., in real or near-real time).  The performance of excessive computations may delay the identification and deployment of necessary resources and actions and/or increase the cost of hardware on the vehicle making it less financially appealing to the consumer. Researches at UC Berkeley proposed algorithms for temporally and spectrally adaptive sonar systems for autonomous vehicles. These allow utilization of existing sonar system in an adaptive manner and in interface with existence hardware/software employed on autonomous vehicles. 

High Electromechanical Coupling Disk Resonators

Capacitive-gap transduced micromechanical resonators routinely post Q several times higher than piezoelectric counterparts, making them the preferred platform for HF and low-VHF (e.g. 60-MHz) timing oscillators, as well as very narrowband (e.g. channel-select) low-loss filters. However, the small electromechanical coupling (as gauged by the resonator's motion-to-static capacitance ratio, Cx/Co) of these resonators at higher frequency prevents sub-mW GSM reference oscillators and complicates the realization of wider bandwidth filters. To address this situation, researchers at UC Berkeley developed a capacitive-gap transduced radial mode disk resonator with reduced mass and stiffness. This novel Berkeley disk resonator has a measured electromechanical coupling strength (Cx/Co) of 0.56% at 123 MHz without electrode-to-resonator gap scaling. This is an electromechanical coupling strength improvement of more than 5x compared with a conventional radial contour-mode disk at the same frequency. This increase should help improve the passbands of channel-select filters targeted for low power wireless transceivers and lower the power of MEMS-based oscillators.  

Combination Of Air Lubrication And Super Hydrophobic Frictional Drag Reduction

This technology combines air layer frictional drag reduction (ALDR) with super hydrophobic surfaces (SHS) to achieve frictional drag reduction of ALDR with significantly reduced gas flux. Thus, enabling increased net energy savings. The stable air layer is achieved with lesser gas flux when utilizing a SHS.Periodic air layers may replenish SHS, enabling drag reduction with reduced energy cost. Combinations of SHS and regular or other non-SHS surface may be used to control spreading of gas, thus facilitating formation of ALDR using discrete gas injection points better than previously achievable. Such surface variations could also be used to preferentially guide gas towards or away from propulsion, depending on desired outcome. By controlling ALDR regionally or globally on a surface, with or without SHS, this technology modifies flow around a hull. This mediates forces on partially or fully submerged objects, enabling control of flow patterns, resistance, steering, and/or dynamics.

Dynamic Statistical Contingency Fuel

Airlines rely on flight dispatchers to perform the duty of fuel planning. In addition to required fuel loading categories, flight dispatchers also uplift contingency fuel to be on the aircraft to hedge against various uncertainties (e.g. weather uncertainty, traffic congestion uncertainty, air traffic control uncertainty etc.) to ensure flight safety and reduce the risk of diversions. To provide consistent and objective fuel planning, some airline Flight Planning System (FPS) provides recommended contingency fuel numbers for dispatchers based on a statistical analysis of historical fuel consumption for similar flights. This recommended contingency fuel is called statistical contingency fuel (SCF). However, due to limitations of the current SCF estimation approach, the application of SCF is limited. Researchers at the University of California, Berkeley have developed a novel methodology based on quantile regression models to overcome the limitations of the current SCF estimation approach. The proposed method takes various factors such as weather, aircraft type, airport, and historical operational conditions into account so that SCF can be estimated in a dynamic, flexible, and more accurate way. Their results have shown that dynamic SCF performs much better than the current SCF estimated by airline FPS and also more sensitive to the specific conditions faced by a given flight. SCF calculated using this novel method will be higher under adverse weather conditions, whereas the current method for determining SCF does not take these conditions into account. The result of using this novel SCF is expected to reduce fuel loading, since dispatchers typically ignore SCF based on the current method when conditions are poor, instead simply loading a very large amount of contingency fuel. By reducing fuel loading, not only would a plan be able to take off sooner, but this would also result in reduced fuel consumption as the aircraft’s weight would be reduced.

Zero-Quiescent Power Transceiver

Trillions of sensors are envisioned to achieve the potential benefits of the internet of things.  Realizing this potential requires wireless sensors with low power requirements such that there might never be a need to replace a sensor’s power supply (e.g. battery) over the lifetime of that device.  The battery lifetime of wireless communications devices is often governed by power consumption used for transmitting, and therefore transmit power amplifiers used in these devises are important to their commercial success.  The efficiencies of these power amplifiers are set by the capabilities of the semiconductor transistor devices that drive them.  To achieve improved efficiencies, researchers at UC Berkeley have developed a novel method and structure for realizing a zero-quiescent power trigger sensor and transceiver based on a micromechanical resonant switch.  This sensor/transceiver is unique in its use of a resonant switch (“resoswitch”) to receive an input, amplify it, and finally deliver power to a load.  This novel technology also greatly improves short-range communication applications, like Bluetooth.  For example, with this technology, interference between Bluetooth devices would be eliminated.  Also, Miracast would work, despite the presence of interfering Bluetooth signals.

Semi-Passive Assistive Devices For The Upper Limbs

Assistive exoskeletons are designed to enable humans to perform tasks otherwise beyond their capacities. One area of particular interest is the upper limb. Existing devices for upper limb assistance are powered by active or passive methods. Active devices use motors, but require complicated controllers and consistent power to perform tasks. Passive devices do not require power, but often have fixed parameters meaning that they are not especially versatile. Moreover, the devices that currently exist tend to be bulky, costly, and inefficient. To address those deficiencies, UC Berkeley researchers have developed a semi-passive assistive device for upper limbs. The Berkeley device is lightweight, reduces user fatigue, and increases load carrying capacity. The device is highly versatile, and is able to increase the mobility and functionality of a user’s arm.

Next-Generation Metal-Organic Frameworks With High Deliverable Capacities For Gas Storage Applications

There are many applications that require the storage of a high density of gas molecules. The driving range of vehicles powered by natural gas or hydrogen, for instance, is determined by the maximum density of gas that can be stored inside a fuel tank and delivered to the engine or fuel cell. In certain situations, it is desirable to lower the pressure or raise the temperature needed to store a given amount of gas through the use of an adsorbent. Developments in next-generation adsorbents, such as metal-organic frameworks and activated carbons, have shown certain weaknesses in terms of the amount of gas that can be delivered when an application has a minimum desorption pressure greater than zero and when a significant amount of heat is released during adsorption or cooling occurs during desorption. To help solve these problems, researchers at the University of California, Berkeley, have developed a next generation of materials using novel porous metal-organic frameworks that demonstrate unprecedented deliverable gas capacities. These engineered adsorbents maximize the amount of gas delivered during each adsorption/desorption cycle. This shows promise in developing next generation gas storage materials for applications with a wide range of operating conditions.

Flywheel System for Effective Battery Energy Storage And Power

In recent years there has been a greater interest in making more energy efficient automobiles.  A number of plug-in vehicles (PEVs) or hybrid electric vehicles (HEVs) are offered by nearly every automaker today.  Although these vehicles offer a cleaner and more energy efficient alternative to traditional petroleum-fueled vehicles, mainstream consumer acceptance of these technologies is stymied by considerations of their premium price, limited travel range, and extended charging times, all consequences of current battery technologies. To address these problems, UC Berkeley researchers have developed an electro-mechanical flywheel system to be incorporated into PEVs and HEVs which increases efficiency, extends battery life and extends travel range making this battery/flywheel system more cost effective and more appealing to the mainstream consumer.  The system combines the chemical energy storage in a battery with the electro-mechanical energy storage in a flywheel to provide the system with both high power capability and high energy density.   

Novel Porous Organic Polymers for Ammonia Adsorption

Ammonia is used in many industrial and commercial applications, for example in the manufacture of fertilizers and cleaners.  However, ammonia is toxic at high concentrations and, therefore, safe storage and transportation of ammonia is required. In addition, trace amounts of ammonia in the atmosphere contaminate and interfere with certain industrial processes, such as semiconductor fabrication, which requires ultra-pure air. Proper ammonia management includes the adsorption of the gas under each of these pressure regimes: high-pressure adsorption for safe storage and transportation and low-pressure adsorption for the removal of trace contaminants from the ambient air. Current methods of adsorption include simple salts, such as MgCl2, but these are not efficient for low-pressure adsorption and furthermore their ammonia cycle is inefficient, requiring significant heat exchange and large changes in volume. Investigators at UC Berkeley have developed a novel polymer for ammonia adsorption that uses acidic materials placed in a spatial arrangement that allows for cooperative adsorption. This not only increases the efficiency of adsorption but also is effective at both high-pressure and low-pressure ammonia adsorption, resulting in multiple applications of the technology. 

  • Go to Page: