Available Technologies

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Find technologies available for licensing from UC Berkeley.

Learn more about UC TechAlerts - Save your searches and get notified of new UC technologies

Bottom-Up Synthesis Of Nanoporous Graphene With Emergent Electronic States

Nanoporous graphene (NPG) is unique in that it exhibits both electronic functionality as a tunable semiconductor and mechanical functionality as a tunable molecular filter membrane. Combining these properties into a single atomically-thin, mechanically robust platform makes NPG an excellent candidate for electronically active nanosieve applications such as sequencing, sensing, ion transport, gas separation, and water purification. The incorporation of nanoscale pores into a sheet of graphene allows it to switch from an impermeable semimetal to a semiconducting nano-sieve.    The performance of nanoporous graphene is highly dependent on the periodicity and reproducibility of pores at the atomic level. The utility of this material, however, hinges on the ability to induce periodic, atomically-precise nanopores and to tailor their precise dimensions and electronic properties. Top-down lithographic approaches have proven to be challenging due to poor structural control at the atomic level and because they typically produce random, imprecise pores within a material that remains semi-metallic. A disadvantage of the few reported bottom-up synthesized NPGs is that the constituent nanoribbons are wide gap semiconductors.    Using a bottom-up synthesis, UC Berkeley researchers have created a fully conjugated nanoporous graphene through a single, mild annealing step following an initial polymer formation. They found emergent interface-localized electronic states within the bulk band gap of the graphene nanoribbon that hybridize to yield a dispersive two-dimensional low-energy band of states. The localization of these 2D states around pores makes this material particularly attractive for applications requiring electronically sensitive molecular sieves.

Compact Ion Gun for Ion Trap Surface Treatment in Quantum Information Processing Architectures

Electromagnetic noise from surfaces is one of the limiting factors for the performance of solid state and trapped ion quantum information processing architectures. This noise introduces gate errors and reduces the coherence time of the systems. Accordingly, there is great commercial interest in reducing the electromagnetic noise generated at the surface of these systems.Surface treatment using ion bombardment has shown to reduce electromagnetic surface noise by two orders of magnitude. In this procedure ions usually from noble gasses are accelerated towards the surface with energies of 300eV to 2keV. Until recently, commercial ion guns have been repurposed for surface cleaning. While these guns can supply the ion flux and energy required to prepare the surface with the desired quality, they are bulky and limit the laser access, making them incompatible with the requirements for ion trap quantum computing.To address this limitation, UC Berkeley researchers have developed an ion gun that enables in-situ surface treatment without sacrificing high optical access, enabling in situ use with a quantum information processor.

Reticulation Of Macromolecules Into Crystalline Networks

Covalent organic frameworks (COFs) are 2D or 3D extended periodic networks assembled from symmetric, shape persistent molecular 5 building blocks through strong, directional bonds. Traditional COF growth strategies heavily rely on reversible condensation reactions that guide the reticulation toward a desired thermodynamic equilibrium structure. The requirement for dynamic error correction, however, limits the choice of building blocks and thus the associated mechanical and electronic properties imbued within the periodic lattice of the COF.   UC Berkeley researchers have demonstrated the growth of crystalline 2D COFs from a polydisperse macromolecule derived from single-layer graphene, bottom-up synthesized quasi one-dimensional (1D) graphene nanoribbons (GNRs). X-ray scattering and transmission electron microscopy revealed that 2D sheets of GNR-COFs self-assembled at a liquid-l quid interface stack parallel to the layer boundary and exhibit an orthotropic crystal packing. Liquid-phase exfoliation of multilayer GNR-COF crystals gave access to large area bilayer and trilayer cGNR-COF films. The functional integration of extended 1D materials into crystalline COFs greatly expands the structural complexity and the scope of mechanical and physical materials properties.

High Performance Iron Electrocoagulation Systems for Removing Water Contaminants

The inventors have developed an iron electrocoagulation (Fe-EC) system for arsenic removal. The system offers a highly effective, low cost, robust method for removing arsenic from groundwater used for drinking, at community scale (10,000 liters per day).The main advance of this invention is to replace the assembly of inter-digited flat steel plates with an assembly of spiral-wound or folded and inter-digited two steel sheets separated only with perforated insulating spacers. This substantially reduces the energy consumption in comparison to other Fe-EC reactors, and allows for larger flow rates for a given reactor size than the standard inter-digited flat plate configuration. This advance is possible because the system relies on: externally added (ppm quantities) of oxidizer (H2O2), and a newly-discovered effect that allows consistent iron dissolution at high current densities. High current density also produces copious quantities of micro-bubbles of H2 gas, which flushes the space between the electrodes continuously during operation, preventing the clogging that has defeated earlier attempts.In a typical Fe-EC reactor, parallel inter-digited plates of mild steel are inserted into the contaminated water and a small DC voltage is applied between alternate plates to promote anodic dissolution of F(0) metal to release Fe(II) ions into the contaminated water. The Fe(II) ions react with dissolved oxygen in the water to produce Fe(III) that is used to capture the contaminants. Typically, an assembly of flat inter-digited parallel steel plates, with nearest neighbor spaced 2 cm to 5 cm, is used in Fe-EC reactors. Occasionally, externally added or in-situ produced oxidants may be used (e.g. externally added strong oxidants such as H2O2, O3, Chlorine, Permanganate, etc., or in-situ produced strong oxidants such as H2O2 using carbon based cathodes). 

Low Band Gap Graphene Nanoribbon Electronic Devices

This invention creates a new graphene nanoribbons (GNR)-based transistor technology capable of pushing past currently projected limits in the operation of digital electronics for combining high current (i.e. high speed) with low-power and high on/off ratio. The inventors describe the design and synthesis of molecular precursors for low band gap armchair graphene nanoribbons (AGNRs) featuring a width of N=11 and N=15 carbon atoms, their growth into AGNRs, and their integration into functional electronic devices (e.g. transistors). N is the number of carbon atoms counted in a chain across the width and perpendicular to the long axis of the ribbon.

High Electromechanical Coupling Disk Resonators

Capacitive-gap transduced micromechanical resonators routinely post Q several times higher than piezoelectric counterparts, making them the preferred platform for HF and low-VHF (e.g. 60-MHz) timing oscillators, as well as very narrowband (e.g. channel-select) low-loss filters. However, the small electromechanical coupling (as gauged by the resonator's motion-to-static capacitance ratio, Cx/Co) of these resonators at higher frequency prevents sub-mW GSM reference oscillators and complicates the realization of wider bandwidth filters. To address this situation, researchers at UC Berkeley developed a capacitive-gap transduced radial mode disk resonator with reduced mass and stiffness. This novel Berkeley disk resonator has a measured electromechanical coupling strength (Cx/Co) of 0.56% at 123 MHz without electrode-to-resonator gap scaling. This is an electromechanical coupling strength improvement of more than 5x compared with a conventional radial contour-mode disk at the same frequency. This increase should help improve the passbands of channel-select filters targeted for low power wireless transceivers and lower the power of MEMS-based oscillators.  

Stroboscopic Universal Structure-Energy Flow Correlation Scattering Microscopy

Flexible semiconductors are far less costly, resource and energy intensive than conventional silicon production. Yet, as an unintended consequence of semiconductor printing, the films produced contain structural heterogeneities, or defects, which can limit their capacity to shuttle energy, or, information, over device-relevant scales. To be able to fully embrace this new, greener process, it is essential to elucidate which physical material properties most influence energy flow and which defects are most deleterious to efficient energy transport so that they can be targeted for elimination at the materials processing stage. Although some rather complex approaches have recently been used to track energy flow, the applicability of each one depends on specifics of the semiconductor properties (bandgap, excitonic vs charge carrier form of excitation, strong absorption or emission). Existing techniques cannot therefore be applied to a broad range of materials, and often necessitate adapting samples to fit the specific requirements of the technique. A broadly applicable approach is therefore needed to non-invasively and simultaneously reveal and correlate material morphology and energy flow patterns across many scales.    Researchers at the University of California, Berkeley have developed a new high-sensitivity, non-invasive, label-free, time-resolved optical scattering microscope able to map the flow of energy in any semiconductor, and correlate it in situ to the semiconductor morphology. This device has been shown as a far simpler approach to spatio-temporally characterize the flow of energy in either charge or exciton form, irrespective of the electronic properties of the material, and with few-nm precision. Furthermore, built into this approach is the unprecedented capability to perform in situ correlation to the underlying physical structure of the material. 

Printable Repulsive-Force Electrostatic Actuator Methods and Device

Flexible electrostatic actuators are well designed for a range of commercial applications, from small micro-mechanical robotics to large vector displays or sound wall systems. Electrostatic actuation provides efficient, low-power, fast-response driving and control of movable nano-, micro-, and macro-structures. While commercially available electrostatic actuators have the requisite high levels of mechanical energy / force for some applications, their energy requirements are typically orders of magnitude higher than what is needed in large-area, low-power applications. Moreover, conventional approaches to these types of electrostatic actuators have limited design geometries and are prone to reliability issues like electrical shorts. To address these problems, researchers at the University of California, Berkeley, have experimented with planar electrostatic actuators using novel printing and electrode patterning and engineering techniques. The team has demonstrated a repulsive-force electrostatic actuator device (100 mm x 60 mm achieved) with extremely high field strength and high voltage operation and without insulator coatings or air breakdown.

RF-Powered Micromechanical Clock Generator

Realizing the potential of massive sensor networks requires overcoming cost and power challenges. When sleep/wake strategies can adequately limit a network node's sensor and wireless power consumption, then the power limitation comes down to the real-time clock (RTC) that synchronizes sleep/wake cycles. With typical RTC battery consumption on the order of 1µW, a low-cost printed battery with perhaps 1J of energy would last about 11 days. However, if a clock could bleed only 10nW from this battery, then it would last 3 years. To attain such a clock, researchers at UC Berkeley developed a mechanical circuit that harnesses squegging to convert received RF energy (at -58dBm) into a local clock while consuming less than 17.5nW of local battery power. The Berkeley design dispenses with the conventional closed-loop positive feedback approach to realize an RCT (along with its associated power consumption) and removes the need for a sustaining amplifier altogether. 

Shaped Piezoelectric Micromachined Ultrasonic Transducer Device

Piezoelectric Micromachined Ultrasonic Transducers (pMUTs) have attracted industry attention for their good acoustic matching, small geometry, low cost-by-batch fabrication, and compatibilities with CMOS and consumer electronics. While planar pMUTs have reasonable performance over bulk piezoelectric transducers, certain deficits remain in terms of coupling and acoustic pressure outputs, DC displacements, bandwidth, and power consumption. To address these deficiencies, researchers at the University of California, Berkeley, have developed a next generation of shaped pMUTs which are no longer fully defined by resonance frequency and can accommodate larger pressure outputs and bandwidths. This new pMUT apparatus can significantly boost overall performance while dramatically reducing power as compared to flat diaphragm state-of-the-art pMUTs.

Apparatus and Method for 2D-based Optoelectronic Imaging

The use of electric fields for signaling and manipulation is widespread, mediating systems spanning the action potentials of neuron and cardiac cells to battery technologies and lab-on-a-chip devices. Current FET- and dye-based techniques to detect electric field effects are systematically difficult to scale, costly, or perturbative. Researchers at the University of California Berkeley have developed an optical detection platform, based on the unique optoelectronic properties of two-dimensional materials that permits high-resolution imaging of electric fields, voltage, acidity, strain and bioelectric action potentials across a wide field-of-view.

Frequency Reference For Crystal Free Radio

Wireless sensors and the Internet of Things (IoT) have the potential to greatly impact society. Millimeter-scale wireless microsystems are the foundation of this vision. Accordingly, to realize this potential, these microsystems must be extremely low-cost and energy autonomous. Integrating wireless sensing systems on a single silicon chip with zero external components is a key advancement toward achieving those cost and energy requirements.  Almost all commercial microsystems today use off-chip quartz technology for precise timing and frequency reference. The quartz crystal (XTAL) is a bulky off-chip component that puts a size limitation on miniaturization and adds to the cost of the microsystem. Alternatively, MEMS technology is showing promising results for replacing the XTAL in space-constrained applications. However, the MEMS approach still requires an off-chip frequency reference and the resulting packaging adds to the cost of the microsystem.  To achieve a single-chip solution, researchers at UC Berkeley developed: (1) an approach to calibrating the frequency of an on-chip inaccurate relaxation oscillator such that it can be used as an accurate frequency reference for low-power, crystal-free wireless communications; and (2) a novel ultra-low power radio architecture that leverages the inaccurate on-chip oscillator, operates on energy harvesting, and meets the 1% packet error rate specification of the IEEE 802.15.4 standard. 

Improved 3D Transistor

This case helps reinvent the transistor by building on the success of Berkeley’s 3D FinFET/Trigate/Tri-Gate methods and devices, with increased focus on the negative capacitance of the MOS-channel and ferroelectrics, and an unconventional effective oxide thickness approach to the gate dielectric. Proof of concept devices have been demonstrated at 30nm gate length and allow for use of thinner ferroelectric films than 2D negative capacitance transistors (e.g. see http://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2014-226.pdf ). The devices also performed at low operating voltage which lowers operating power.

Enhancing Photoluminescence Quantum Yield for High Performance Optoelectrics

Surface defects dominate the behavior of minority carriers in semiconductors and optoelectronic devices. Photoluminescence quantum yield (QY), which dictates efficiency of optoelectrics such as LEDs, lasers, and solar cells, is extremely low in materials with a large number of surface defects. Researchers at UC Berkeley and Lawrence Berkeley National Laboratory have developed a bis(trifluoromethane) sulfonamide (TFSI) solution for passivation/repair of surface defects in 2D transition metal dichalcogenide (TMDC). This air-stable solution-based chemical treatment provides unmatched photoluminescence QY enhancement to values near 100% without changing the surface morphology. The treatment eliminates defect-mediated non-radiative recombination, which eliminates the low performance limit of TMDC and enhances its minority carrier lifetime. This novel development can address surface passivation in numerous semiconductors which will lead to highly efficient light emitting diodes, lasers and solar cells based on 2D materials.

Cross Reactive FET Array for Gas Mixture Detection

Conventional chemical sensor discriminates different analytes by rejecting the interference using selective decorations on the sensor body. A cross-reactive chemical sensor array discriminates different analytes by interpreting the collective sensor response using signal processing technique, and solves for the interference. Commercial sensor manufacturers search for the optimal choice of material, identifier and the signal processing technique to maximize the sensor performance in terms of chemical detection and discrimination. To address the need, researchers at the University of California, Berkeley, have developed a platform with 2D material incorporated in a cross-reactive field effect transistor (FET) sensor array. By examining and manipulating the properties of the sensor array, researchers have invented a low power, high efficiency, and versatile chemical sensing technology that is promising for commercialization.

Enhanced Patterning Of Integrated Circuits

Information and communication technologies rely on integrated circuits (ICs) or “chips.” Increased integration has improved system performance and energy efficiency, and lowered the manufacturing cost per component. Moore’s Law predicts that the number of transistors on an IC will double every two years, yet industry experts predict that we are reaching economic limits of traditional circuit patterning processes. Photolithographic patterning is best suited to print linear features that are evenly spaced. The smaller or more complex the shape, the more likely the printed pattern will be blurred and unusable. Although multiple-patterning techniques can be used to increase feature density on ICs, they bring a high additional cost to the process. This means that the most advanced ICs available today have a high density of features, but are restricted to having simple patterns and are increasingly expensive to produce. Without innovations in production techniques, Moore’s Law will reach its end in the near future.  To address this issue, researchers at UC Berkeley have developed a one-step method to increase feature density on chips. This method is capable of achieving arbitrarily small feature size, and self-aligns to pre-existing features on the surface formed by other techniques. 

Methods to Produce Ultra-Thin Copper Nanowires for Transparent Conductors

The disclosure provides innovative synthesis methods to produce uniform, ultrathin and high-quality metal nanostructures. In certain embodiments, the synthesis methods disclosed herein are solution based, therefore affording scalability and allowing for the production of metal nanostructures (e.g. Cu-nanowires ) that can have varying diameters, e.g., between 1 nm to 70 nm. The resulting metal nanostructures can be used to construct transparent electrodes that have lower costs, better transparency, and superior flexibility in comparison to conventional metal-oxide conductors, such as indium tin oxide (ITO) .

Chemical-Sensitive Field-Effect Transistor

Conventional metal-oxide semiconductor field-effect transistor (MOSFET) technology consists of a source, drain, gate, and substrate. The chemical field-effect transistor (chemFET) is a type of a field-effect transistor acting as a chemical sensor, and is similar to MOSFET except for the gate structures. Modern industrial players seek higher-sensitivity technologies which are small, durable, efficient, and versatile. Further advances in these materials and structures could enable many new kinds of layered semiconductors and devices. To address need, researchers at the University of California, Berkeley, have developed chemical-sensitive field-effect transistor (CS-FET) platform technology. By exploiting selective thin films incorporated into the CS-FET, researchers have created chemical sensors with commercial promise in terms of chemical-versatility and low-power. 

A Thin Film Vls Semiconductor Growth Process

A team of Berkeley Lab researchers has invented the first vapor-liquid-solid (VLS) growth technology yielding III-V photovoltaics. The photovoltaics achieve 25% power conversion efficiency at a cost significantly lower than current approaches due to the non-epitaxial processing approach and high material utilization rate. The films have grain sizes of 100-200 microns (100 times larger than yielded from conventional growth processes), minority carrier lifetimes up to 2.5 nanoseconds and electron mobilities reaching 500 cm2/V-s. Under one-sun equivalent illumination, an open circuit voltage of up to 930 mV can be reached, just 40 mV lower than measured on a single crystal wafer. Berkeley Lab researchers fabricated continuous thin films of polycrystalline indium phosphide (InP) directly on metal foils by, first, depositing an indium (In) thin film directly on molybdenum (Mo) foil. Next, they deposit a thin capping layer to prevent dewetting of the indium from the substrate during subsequent high temperature processing steps. The resulting stack (Mo – In – capping layer) is then heated in the presence of phosphorous precursors causing supersaturation of the liquid indium with phosphorous, followed by precipitation of InP, thus turning all the In into InP. III-V photovoltaics deliver the highest power conversion efficiencies, but significant processing costs (expensive materials and equipment, low precursor utilization rate) have limited their use. Berkeley Lab’s non-epitaxial growth technology overcomes these limitations to deliver a promising low cost solar cell.

Novel Porous Organic Polymers for Ammonia Adsorption

Ammonia is used in many industrial and commercial applications, for example in the manufacture of fertilizers and cleaners.  However, ammonia is toxic at high concentrations and, therefore, safe storage and transportation of ammonia is required. In addition, trace amounts of ammonia in the atmosphere contaminate and interfere with certain industrial processes, such as semiconductor fabrication, which requires ultra-pure air. Proper ammonia management includes the adsorption of the gas under each of these pressure regimes: high-pressure adsorption for safe storage and transportation and low-pressure adsorption for the removal of trace contaminants from the ambient air. Current methods of adsorption include simple salts, such as MgCl2, but these are not efficient for low-pressure adsorption and furthermore their ammonia cycle is inefficient, requiring significant heat exchange and large changes in volume. Investigators at UC Berkeley have developed a novel polymer for ammonia adsorption that uses acidic materials placed in a spatial arrangement that allows for cooperative adsorption. This not only increases the efficiency of adsorption but also is effective at both high-pressure and low-pressure ammonia adsorption, resulting in multiple applications of the technology. 

Pyroelectric MEMS Infrared Sensor with Numerous Wavelength Absorptions

In recent years, gas sensors for industrial applications have experienced great advances through rapid evolution of microelectromechanical systems (MEMS). As a result of increased government legislative pressure on industrial health and safety, commercial customers are demanding integrated smart sensor technology and systems which leverage MEMS for small footprint, low cost, and high-performance features. Market researchers suggest double-digit compound annual growth rates for MEMS sensors through 2018, with the fastest growth is expected in the semiconductor sensor base. Traditional infrared gas analyzers determine the absorption of an emitted infrared light source through a certain air sample. Nondispersive infrared technology (NDIR) detects certain gas by detecting the absorption of infrared wavelengths that is characteristic of that gas. NDIR detectors are the industry standard method of measuring the concentration of carbon oxides. Researchers at UC Berkeley and Davis have successfully demonstrated pyroelectric infrared detectors that exhibit high sensitivity and reliable performance for advanced gas analyses. The MEMS technology is well suited for constant monitoring in harsh environments where long term stability is important, such as petroleum, medical, and industrial monitoring settings.

MEMS-Based Charge Pump

The reduction of power supply voltage with each new generation of CMOS technology continues to complicate the design of charge pumps needed for high voltage applications that integrate into systems alongside transistor chips -- such as the increasing number of MEMS-based gyroscopes, timing oscillators, and gas sensors. Moreover, the aggressive scaling in CMOS resulting in lower dielectric and junction breakdown voltages has compelled the use of customized CMOS processes -- including increased gate oxide thickness and/or added deep-n-wells. Clearly, advances in transistor technology are moving in the opposite direction of the needs of high voltage MEMS applications. To address this trend, researchers at UC Berkeley have developed a MEMS-based charge pump. This design avoids the turn-on voltage and breakdown limitation of CMOS. With much higher breakdown voltages than transistor counterparts, the demonstrated MEMS charge pump implementation should eventually allow voltages higher than 50V desired for capacitive-gap transduced resonators that currently dominate the commercial MEMS-based timing market.

Micro Electromechanical Switch Design with Self Aligning and Sub-Lithographic Properties

Shrinking of integrated circuit (IC) device dimensions provides for enhanced functionality and performance  of computers and electronics. Researchers at Berkeley are exploring nano-mechanical information processing as a means to overcome the energy-efficiency limits of CMOS technology and recently have directed their efforts toward the development of device designs suitable for implementation in the cross-point array architecture for minimal footprint.  To that end, our researchers have designed a novel process for fabricating ultimately scaled electro-mechanical relays with decananometer lateral dimensions. Their innovation includes a compact electro-mechanical switch design which has self-aligned features with a minimum dimension not defined lithographically. By incorporating multiple sets of output electrodes, the area required to implement a complex logic gate is reduced by a factor of 2. 


Berkeley researchers have designed a methodology to solve in real-time linear programming (LP) problems with an analog circuit. Despite continued advancement of digital computers, the task of solving LP in very short times (e.g. 1 MHz for MPC based control of fast systems) remains challenging. Due to lack of temporal overlap between analog computation and MPC, there have been few investigations in applying analog computation towards MPC problems or LP problems. Using this technology, solution to real-time optimization problems can be achieved at 6 microseconds and ongoing work aims to reduce it to a few nanoseconds, which is lower than any current method known to our investigators.Possible applications of the new methodology are fast and power-efficient analog signal processing (e.g. Kalman filter), image processing (e.g. optical flow, mathematical morphology) and advanced control (e.g. model predictive control). Applications in automotive industry:The ability to find a solution for an optimization problem in fast and reliable manner serves well the need to design efficient and reliable vehicles.  An analog optimization circuit, besides being faster than a digital counterpart, can be used in safety-critical systems, since it has a predictable and continuous behavior.  The new circuit for analog optimization is significantly faster and simpler than previously known analog approaches. Therefore, this technology enables to design systems that are either faster or cheaper than the existing ones. The technology is broadly applicable in the automotive industry, since fast, reliable and power efficient embedded computing is required in many vehicle systems. Potential applications include the following fields: 1.      Very fast Model Predictive Control (MPC) systems.   2.      Low level image processing:  Examples include optical flow or edge detection. 3.      Signal processing embedded in the sensor e.g. Kalman filter. 

Wafer Level Chip Scale Packaging Technology For Integrated Mems Devices

Integrated microelectromechanical systems (MEMS) packaging process at the waver-level scale is an important technology for various devices. For example, in a MEMS accelerometer, the central sensor is a free-standing microstructure and it is desirable to protect this sensor. Moreover, it may be necessary for some MEMS devices to encapsulate the microstructures in vacuum environment for applications such as resonant accelerometers or gyroscopes. While many efforts have shown the successful fabrication of encapsulations for MEMS devices, creating an encapsulation membrane spanning several millimeters in width is challenging. One issue relates to the sacrificial layer below the encapsulation membrane which must be etched away with etching holes and these holes must be sealed during the encapsulation process. Another problem pertains to the membrane which must be made strong enough so that it does not collapse on the MEMS structures inside the cavity. In addition to these challenges, processing time for the thin films must be reasonably fast. To address these problems, researchers at UC Berkeley and Toshiba have developed devices and methods for fast, large-scale integration of semiconductor elements, resulting in a chip-scale package having a thin-film hollow-seal structure for MEMS elements.

  • Go to Page: