Browse Category: Medical > New Chemical Entities, Drug Leads

Categories

[Search within category]

Antibodies for Pseudomonas (P.) aeruginosa

Researchers at the University of California, Davis have developed recombinant antibodies (VHH or nanobodies) to diagnose and treat Pseudomonas (P.) aeruginosa infection.

Novel Inhibitors of Mitochondrial Electron Transport

Researchers at the University of California, Davis have discovered a class of compounds that both bind to a unique newly-discovered binding site in respiratory complex III and act as inhibitors of electron transport for use as mitochondrial anti-cancer drugs.

Anti-Androgens for the Treatment of Chemotherapy Resistant Prostate Cancers

Researchers at the University of California, Davis have discovered a special class of androgen inhibitors for the treatment of chemotherapeutic prostate resistant cancers.

Lipid(S) Conjugated Anticancer Smac Derivatives

UCLA researchers in the Department of Medicine have synthesized monomeric and dimeric second mitochondria derived activator of caspases (SMAC) analogs that can be used for anticancer therapeutics.

Compound Library Made Through Phosphine-Catalyzed Annulation/Tebbe/Diels-Alder Reaction

UCLA researchers in the Department of Chemistry and Biochemistry have developed a small molecule library consisting of a large variety stereochemical variants.

PAC1 Receptor Agonists for Treatment of Obesity, Diabetes, and Fatty Liver Disease

UCLA researchers have developed novel PAC1 receptor agonists (MAXCAPs) that specifically bind and activate PAC1 receptors to induce satiety and treat multiple metabolic diseases.

Apoe4-Targeted Theraputics That Increase Sirt1

UCLA researchers have identified Alaproclate (A03) as a promising drug candidate to treat Mild Cognition Impairment (MCI) and Alzheimer’s disease (AD) through inhibition of the ApoE4 neurotoxicity.

DEPTOR Inhibitors

Researchers at UCLA have found a small molecule that prevents the binding of DEPTOR to mTOR. The inhibition of interaction between DEPTOR and mTOR results in selective death of multiple myeloma cells, and can therefore be used as a targeted therapy for the disease.

Inhibitors Of The N-Terminal Domain Of The Androgen Receptor

UCLA researchers under the guidance of Drs. Matthew Rettig and Mike Jung have developed a novel family of therapeutics for use against castration resistant prostate cancer. These drugs have been shown to inhibit the androgen receptor and are unaffected by the most common drug-resistant mutations found in prostate cancer patients.

A Novel Method to Generate Specific and Permanent Macromolecular Covalent Inhibitors

UCSF researchers have invented a novel method to generate covalent macromolecular inhibitors. This strategy allows a peptide inhibitor to bind to its target protein specifically and irreversibly through proximity-enabled bioreactivity.

Protein Kinase C Epsilon Small Molecule Inhibitors to Treat Pain, Anxiety, Alcoholism, and Nicotine Addiction

This invention provides new inhibitors to protein kinase C epsilon (PKCε) for the treatment and prophylaxis of various diseases such as pain, anxiety, alcoholism, inflammation, cancer, diabetes, and other conditions.

Antisense Oligonucleotides and Drug Conjugates for Obesity and Diabetes Treatment

The obesity epidemic is an ongoing issue leading to significant economic and social burden, in part due to its role in the development of diabetes. Only three DFA-approved drugs for obesity treatment currently exist, none of which are without significant side effects and risks. Researchers at UCI have developed a DNA-based approach that activates metabolism, to target genes only in the fat and liver, causing increased energy expenditure and weight loss without affecting other organs. These present a viable approach to obesity treatment with minimal side effects in comparison to current drug treatments.

Methods for purifying and treating wounds with a proprietary biological agent, and to coat biomaterials designed to be synthetic substrates, aimed at promoting healing.

This invention describes methods for using a proprietary biological agent to improve the quality and speed of wound healing, and for coating a biomaterial to serve as an artificial epithelium for severe wounds. Also described are methods to produce high yields of the biological agent and of its purification.

Novel Antiviral Compounds to Treat Enterovirus Infections

Researchers in UCLA Department of Molecular & Medical Pharmacology have used a rapid, live virus assay to develop potent enterovirus inhibitors.

Compositions for Enhancing Beta Cell Maturation, Health, and Function

Beta cell failure is the central cause of type-2 diabetes. Researchers at UCI have developed molecules for treating diabetes that target proteins on the surface of beta cells and induce their clustering. This clustering results in an increase in insulin secretion and content and promotion of beta cell maturation. Furthermore, the clustering effect seen with these compositions may promote both proliferation and the reversal of de-differentiation.

PharmaCoLogic: Preclinical Cardiac Drug Screening

Researchers at the University of California, Davis have developed PharmaCoLogic: a computer based preclinical screening model to predict the effects of developmental drugs and drug induced cardiotoxicity.

Treatment To Prevent Post-Antibiotic Expansion Of Enterobacteriaceae

Researchers at the University of California, Davis have identified a nuclear receptor as a new target for treatments preventing post-antibiotic Enterobacteriaceae expansion.

Contraceptive Compounds

Steroid hormones regulate human physiology and cellular metabolism by either slowly changing gene expression, or by a binding to a plasma membrane receptor, which leads to the activation of ion channels. The latter represents a fast signaling event that plays role in sperm activation or insulin secretion. For example, the female hormone progesterone (P4) activates the principal calcium channel of sperm (CatSper) via this fast pathway. By testing different steroids and steroid-like molecules, UC Berkeley researchers discovered that pregnenolone sulfate (PS), a sulfated steroid hormone similar in structure to P4, is another steroid hormone that can activate CatSper in human spermatozoa. In addition, the researchers discovered two specific and nontoxic compounds found in plants that antagonize physiological function of P4 and PS, and prevent spermatozoa from reaching full fertilizing potential. These compounds can serve as contraceptives since they reduced the number of hyperactive spermatozoa, thus preventing sperm from reaching and fertilizing an egg.  

Siderophore-Based Immunization Against Gram-Negative Bacteria

Bacterial pathogens such as E. coli and Salmonella hijack the host’s iron to cause infection. This invention describes an immunization strategy for triggering an immune response against the iron-sequestering agent secreted by the pathogen, thus turning the bacterial virulence mechanism against itself, and thereby resulting in host immunity.

Novel therapeutic approach for obesity: Pharmacological targeting of Kv1 potassium channels

Obesity is a global epidemic that is in need of novel and safe therapeutics. Despite the enormous efforts by pharmaceutical companies, there is a shortage for safe therapeutics for obesity. Researchers at UCI have developed a selective inhibitor of Kv1.3 potassium channel, ShK-186, which displays powerful anti-obesity effects in a mouse model of diet-induced obesity. Using critical experimental measures, researchers highlight the potential use of Kv1.3 blockers in the treatment of obesity and insulin resistance.

Thrombospondins as a target to treat neuropathic pain

Neuropathic pain is a common problem, though, there are few existing pain medications have specific targets to treat this type of pain, and often lack efficacy and tolerance. The invention identifies specific proteins and related genes as targets for treating neuropathic pain in an animal model.

Stimuli Responsive Immunostimulants

An immune response typically occurs during inflammation, auto-immune diseases, or cancers. In such cases, chemical triggers, or immunostimulants, recognized by receptor proteins at cell membranes activate the immune cells. Researchers can use these immunostimulants to test how different cell subsets contribute to immune response mechanisms. This invention describes a novel type of immunostimulant that can be toggled on and off, both inside the body and in vitro.

Re-Sensitizing Cancer Cells to Anticancer Drugs

Researchers at the University of California, Davis have discovered a new class of ROR-γ inhibitors which can reduce and reverse cancer cell resistance to anticancer drugs.

Novel Solid Tumor Chemodrug LLS2

Researchers at the University of California, Davis have developed a new library of small molecule LLS2 that can kill a variety of cancer cells

Mi-181: A Potent Small Synthetic Microtubule-Targeting Anticancer Agent

UCLA researchers in the Department of Chemistry & Biochemistry and Department of Molecular & Medical Pharmacology have discovered compound MI-181 and successfully synthesized its derivatives and analogs, which have the potential for use in cancer therapy by arresting cells during the process of cell division and promoting apoptosis.

  • Go to Page: