Browse Category: Materials & Chemicals > Other

[Search within category]

Real-time Feature Inspection for Additive Manufacturing Systems

Additive Manufacturing (AM) is the process of making 3D objects from a computer model data by joining materials layer by layer under computer control using a 3D printer.   Poplar systems, even for home use, can be purchased that use various polymer plastics. In more robust application areas, metal alloys are required and their manufacturing is much more costly and time intensive. Metal parts created by additive manufacturing are often difficult to dimensionally characterize due to the complex surface structures created by welding phenomena present in state-of the art printing machines. The most holistic techniques involve measuring the surface of each sintered layer of powder, however, this is complicated to perform in a non-contact, non-destructive, and in-situ manner. Techniques such as Spectral Domain Optical Coherence Tomography can be used to perform this task, but are limited to large pointwise measurement, limiting the speed and resolution of measuring the surface topography of each layer.  Due to the cost associated with additive manufacturing with alloys, reliable inspection methodologies are necessary to ensure that the part being fabricated is free of defects and meets all user specifications.

Disposable and Semi-Disposable Medical Consumables for Infection Control

In the United States lives are lost every year due to the spread of infections in hospitals and healthcare facilities. Thus, healthcare workers must take all precautions to prevent the spread of infectious diseases, especially in surgical spaces. One key step in this process is to control environmental surfaces because certain types of microbial bacteria or fungi are capable of surviving on environmental surfaces for months at a time. A potential solution would be to use consumables that are disposable, or semi-disposable, and offer a platform of products for the purposes of infection control.  

Development of Flexible and Stretchable Thermoelectric Personal Wearable Devices

Currently available wearable thermoelectric devices have the drawback of requiring a rigid heat sink (e.g., metal pin fin structures, or a fan), or the device performance is usually very low in the absence of such a heat sink.

Non-Mechanical Multi-Wavelength Integrated Photonic Beam Steering Device

Today, projecting optical energy is performed using high power laser sources coupled to free-space optical systems comprised of mechanical components, moving parts, and bulk optics. Unfortunately, the application range of these legacy systems is limited by their size, weight, reliability and cost. Consequently, a substantial research effort has been directed toward the miniaturization and simplification of these systems. Recent work has focused on beam steering using phased arrays. Although optical phased arrays are an elegant non-mechanical beam steering approach, the technical and environmental challenges compared to RF systems (10,000 times smaller wavelengths and tolerances) are daunting. Multi-octave operation across the UV to LWIR regions with acceptable losses poses additional technical challenge for any optical phased array beam steering approach. For these reasons, a need exists for a non-mechanical beam steering approach that lends itself to miniaturization as well as high power ultra-wideband operation.

Efficient Nebulizer

Brief description not available

(SD2015-321) Method For Fabricating Two-Dimensional Protein Crystals

2D crystalline materials possess high surface area-to-volume ratios, light and can be very porous. These properties have rendered synthetic 2D materials immensely attractive in applications including electronics, sensing, coating, filtration and catalysis. The rational design of self-assembling 2D crystals remains a considerable challenge and a very active area of development. The existing methods for the bottom-up fabrication of biological or non-biological 2-D crystalline materials are not generalizable and scalable. 2D protein design strategies, in particular, require extensive computational work and costly protein engineering. In addition, these strategies have low success rates, the resulting materials contain large defects, and are multi-layered and therefore not appropriate for scaling or materials-applications. Moreover, these strategies often require the presence of lipids for supported assembly.

Novel Electrolytes via Compressed Gas Solvent

Brief description not available

Method Of Synthesizing Tetrazines

Nitrogen-rich tetrazines, have broad applications in biochemistry including small-molecule imaging, genetically targeted protein tagging, post-synthetic DNA labeling, nanoparticle-based clinical diagnostics, in-vivo imaging, as well as significant use in materials science, coordination chemistry, and the production of high energy materials such as those used in specialty explosives research. Among other uses, tetrazines can serve as coupling agents for molecular imaging compounds such as fluorophores or magnetic contrast agents, or even as ligands for metal catalysts or inorganic materials such as metal-organic frameworks. Tetrazines are also valuable synthetic intermediates, and have been elegantly deployed on route to several natural product syntheses. Despite the promise of tetrazines, the lack of convenient synthetic methods is a significant roadblock to their broader use and study.

Improved Materials for Lightweight Armor

Brief description not available

Sensitive Chemical Sensor To Detect A Broad Range Of Nitrogen-Based Explosives

Detecting ultra trace explosive analytes is important for forensic or counterterrorism  applications as well as for personnel, baggage, or cargo screening.  However, metal detectors frequently fail to detect explosives (such as those in the plastic casing of modern land mines); dogs are expensive and difficult to maintain: and other methods, including gas chromatography coupled with mass spectrometry, surface-enhanced Raman, energy dispersive X-ray diffraction, for example, are highly selective, but are expensive and not easily adapted to a small, low-power package.  Therefore, chemical sensors are preferable to other detection devices.

High Glucose Uptake E. Coli Strain

Brief description not available

  • Go to Page: