Learn more about UC TechAlerts – Subscribe to categories and get notified of new UC technologies

Browse Category: Nanotechnology > Tools and Devices


[Search within category]

High-Efficiency Ion Source

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a miniature direct-current (DC) ion source with the higher power efficiencies and lower erosion rates needed for space propulsion applications.

High-Throughput Quantification of Nanoparticle Degradation using Computational Microscopy and its Application to Drug Delivery Nanocapsules

UCLA researchers in the Department of Bioengineering have developed a high-throughput imaging technique that monitors the degradation of nanoparticles in real time.

High-Throughput Microfluidic Gene-Editing via Cell Deformability within Microchannels

UCLA researchers in the Departments of Pediatrics and Chemistry & Biochemistry have developed a microfluidic device for delivery of biomolecules into living cells using mechanical deformation, without the fouling issues in current systems.

Plasmonic Nanoparticle Embedded PDMS Micropillar Array and Fabrication Approaches for Large Area Cell Force Sensing

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a novel cell force sensor platform with high accuracy over large areas.

Anti-Ferromagnetic Magneto-Electric Spin-Orbit Read Logic

UCLA researchers in the department of Electrical Engineering have developed a novel magetoelectric device for use as a spin transistor.

Mobile Phone Based Fluorescence Multi-Well Plate Reader

UCLA researchers have developed a novel mobile phone-based fluorescence multi-well plate reader.

Accelerating palladium nanowire hydrogen sensors using engineered nanofiltration layers

Researchers at UCI have developed a method for enhancing existing hydrogen gas sensors, leading to as much as a 20-fold improvement in sensor response and recovery times.

Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning

UCLA researchers have developed a novel method for computational sensing using low-cost and mobile plasmonic readers designed by machine learning.

Process For Electrodepositing Manganeese Oxide With Improved Rate Capabilities For Electrical Energy Storage

The invention is a novel method for enhancing the energy, power and performance of lithium ion batteries. It applies a new process for electrodepositing Manganese Oxide in a way that improves the electrical properties as well as the rate at which the battery can operate. Using this method, the energy storage capabilities is boosted significantly; making it faster, more reliable and enabling various applications to become more dependent on electric/battery solutions.

System and Method for High Density Assembly and Packaging of Micro-Reactors

High density micro-reactors are fabricated to form an array of wells into a surface for use in high throughput microfluidic applications in biology and chemistry. Researchers at the University of California, Irvine developed a method for increasing micro-reactor densities per unit area using rapidly self-assembled three-dimensional crystalline formation droplet arrays, and a device for performing the same.

Scalable Super-Resolution Synthesis Of Core-Vest Composites Assisted By Surface Plasmons

Concurrent control of size, shape, and composition of nanoparticles is key to tuning their functionality with widespread applications in sensing, catalysis, cancer cell ablation, water-splitting, spectroscopy, dye-sensitized solar cells, and more. UCB inventors demonstrate unprecedented precision over the structure and composition of complex nanoparticles by fusing colloidal chemistry with plasmon assisted synthesis.  They show that combining properties of light used for plasmon excitation (wavelength, intensity, and pulse-duration) with the physical properties of nanoparticles (size, shape, and composition) leads to hitherto unrealized core-vest composite nanostructures. Tunable variations in localized temperature distributions >50 degrees C are achieved over nanoparticles as small as 50-100 nm. These temperature variations result in core-vest formations with selective shell coverage that mirrors the local inhomogeneities of the heat distribution. This new class of core-vest nanoparticles (CVNs) allows plasmonic enhancement of nanocomposite functionalities that are inaccessible in typical core-shell geometries.  

Combined Individual Nanomaterial Enhancements for Total X-Ray Enhancement

Researchers at the University of California, Davis have developed a method to combine individual nanomaterial enhancements to achieve greater X-ray enhancement.

A Cavity-Free Self-Referencing Frequency Comb

A self-referencing frequency comb based on high-order sideband generation (HSG) that does not require cavities. Applications include "set-and-forget" optical atomic clocks and high-resolution spectrometers for airborne chemicals.

Revolutionizing Micro-Array Technologies: A Microscopy Method and System Incorporating Nanofeatures

UCLA researchers in the Department of Electrical Engineering have developed a novel lensfree incoherent holographic microscope using a plasmonic aperture.

Rapid, Portable And Cost-Effective Yeast Cell Viability And Concentration Analysis Using Lensfree On-Chip Microscopy And Machine Learning

UCLA researchers in the Department of Electrical Engineering have developed a new portable device to rapidly measure yeast cell viability and concentration using a lab-on-chip design.

Mechanical Process For Creating Particles Using Two Plates

UCLA researchers in the Department of Chemistry and Biochemistry & Physics and Astronomy have developed a novel method to lithograph two polished solid surfaces by using a simple mechanical alignment jig with piezoelectric control and a method of pressing them together and solidifying a material.

Low Cost Wireless Spirometer Using Acoustic Modulation

The present invention relates to portable Spirometry system that uses sound to transmit pulmonary airflow information to a receiver.

Microfluidic Component Package

The present invention describes a component package that enables a microfluidic device to be fixed to a Printed Circuit Board (PCB) or other substrate, and embedded within a larger microfluidic system.

Method and System for Ultra High Dynamic Range Nucleic Acid Quantification

Researchers at UC Irvine developed a device and method that combines the high dynamic range and high accuracy of digital PCR (dPCR) with the real-time analysis of quantitative PCR (qPCR) to achieve a ultra-high dynamic range PCR over 10 to 12 orders of magnitude. The present method is accomplished by a highly integrated design that optimally packs, thermocycles, and images as many as 1 million reaction vessels.

Nanowire Building Block

Nanowires have applications as transistors or bioelectronic devices. Current methods to synthesize nanowires lack the ability to precisely control length, sequence, and terminal functionality. Using this invention as a building block, organic nanowires can be made with controlled length, sequence, and terminal functionality. The organic nanowires made with this invention also exhibit zero-resistance and do not degrade with increased length.

Determining Oil Well Connectivity Using Nanoparticles

UCLA researchers in the Department of Chemistry & Biochemistry, Department of Math, and California NanoSystems Institute (CNSI) have designed methods and systems for monitoring and testing underground wells using sampled nanowires.

Soluble Fluorescent DNA Label

Assays or biosensors that utilize electrochemical or fluorescent techniques often employ DNA electrochemical probes. Current probes have drawbacks, as they have either electronic or fluorescent properties, are not readily water-soluble, and are poorly coupled within a DNA strand. This invention is a DNA electrochemical probe that has both electronic and fluorescent properties, is water-soluble, and can readily incorporate into a DNA strand.

Axi-Symmetric Small-Footprint Gyroscope With Interchangeable Whole-Angle And Rate Operation

The invention is a compact, degenerate mode gyroscope capable of achieving high Q-factor in both whole-angle and rate operation modes.

Synthesis Technique to Achieve High-Anisotropy FeNi

Researchers at the University of California, Davis have developed an innovative synthesis approach to achieve high anisotropy L1 FeNi by combining physical vapor deposition and a high speed rapid thermal annealing (RTA).

A Micro/Nanobubble Oxygenated Solutions for Wound Healing and Tissue Preservation

Soft-tissue injuries and organ transplantation are common in modern combat scenarios. Organs and tissues harvested for transplantation need to be preserved during transport, which can be very difficult. Micro and nanobubbles (MNBs) offer a new technology that could supply oxygenation to such tissues prior to transplantation, thus affording better recovery and survival of patients. Described here is a novel device capable of producing MNB solutions that can be used to preserve viability and function of such organs/tissue. Additionally, these solutions may be used with negative pressure wound therapy to heal soft-tissue wounds.

  • Go to Page: