Berkeley IPIRA

Request Information

APODIZATION SPECIFIC PEAK FITTING IN CHARGE DETECTION MASS SPECTROMETRY

Tech ID: 32867 / UC Case 2022-148-0

PATENT STATUS

Country	Туре	Number	Dated	Case
Patent Cooperation Treaty	Published Application	2024/039633	02/22/2024	2022-148
Additional Patent Pending				
BRIEF DESCRIPTION				
Short-time Fourier transforms with shor	segment lengths are typically used to ana	lyze single ion charge detecti	on mass spectrometry	(CDMS) data either t
overcome effects of frequency shifts that	t may occur during the trapping period or t	o more precisely determine t	he time at which an ior	n changes mass, charg
or enters an unstable orbit. The short seg	ment lengths can lead to scalloping loss u	nless a large number of zero-	fills are used, making c	computational time a
significant factor in real time analysis of	data.			

To address the foregoing deficiencies in prior approaches, UC Berkeley researchers have developed an apodization specific fitting that can lead to a 9-fold reduction in computation time compared to zero-filling to a similar extent of accuracy. This makes possible real-time data analysis using a standard desktop computer and capable of separating ions with similar frequencies.

SUGGESTED USES

» analyze single ion charge detection mass spectrometry (CDMS)

ADVANTAGES

» improved resolution, charge measurement and data analysis speed

» >20% increase in S/N

» eliminates computational barriers by enabling real time processing of CDMS data on a laptop computer

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- Full Signal Utilization In Charge Detection Mass Spectrometry
- Multiplex Charge Detection Mass Spectrometry
- Sequential Pass Express Charge Detection Mass Analyzer
- Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe
- Aerosol Ionization For Charge Detection Mass Spectrometry Ion Mobility Analysis

CONTACT

Terri Sale terri.sale@berkeley.edu tel: 510-643-4219.

Permalink

INVENTORS

» Williams, Evan R.

OTHER INFORMATION

CATEGORIZED AS

» Medical

» Research Tools

» Sensors & Instrumentation

» Analytical

» Physical Measurement

» Scientific/Research

RELATED CASES

2022-148-0

University of California, Berkeley Office of Technology Licensing
2150 Shattuck Avenue, Suite 510, Berkeley,CA 94704
Tel: 510.643.7201 | Fax: 510.642.4566
ipira.berkeley.edu/ | otl-feedback@lists.berkeley.edu
© 2022, The Regents of the University of California
Terms of use | Privacy Notice