

Technology & Industry Alliances

Available Technologies

Contact Us

Request Information

Permalink

Molten Salt Chemical Looping Process for Efficient Chlorine Production from HCI

Tech ID: 32493 / UC Case 2019-967-0

BACKGROUND

Hydrogen chloride (HCI) is a waste product in several industrial processes at massive scale, such as in the preparation of isocyanates which are crucial to many industries. One way to repurpose HCI waste is to upcycle it into chlorine (Cl₂), a valuable starting material used in industrial chemistry. Current methods of converting HCI to Cl₂ include the Deacon process, an equilibrium reaction that consists of the aerobic oxidation of HCI to Cl₂ and water. A disadvantage to all single-stage Deacon Process concepts is the expensive workup (i.e. separation of Cl₂ from other products in the equilibrium mixture). A more efficient continuous process involves molten salt-based chemical looping with three interconnected reactors containing reactive salts.

DESCRIPTION

Researchers at the University of California, Santa Barbara have realized continuous production of Cl₂ from HCl with a three-reactor molten salt chemical looping system. This three-stage process consists of (I) the oxidation of CuCl, (II) the chlorination of Cu₂OCl₂, and (III) thermal decomposition of CuCl₂. The most essential component of this technology is the reactor system comprising three inter-connected bubble lift columns that are placed in a sand bath to provide uniform heating. The system's relatively-low KCl concentration allows for a high space-time yield, as well as relatively low temperature differences between the reactors. Additionally, this technology can be operated with notably low energy consumption. The Cl₂ produced can be used to manufacture other commercially valuable products and simultaneously curtail the emissions of waste HCl.

ADVANTAGES

- ► Upcycles a common waste product
- ▶ More efficient Cl₂ workup compared to current HCl conversion technologies
- Low energy consumption

APPLICATIONS

► Large-scale industrial chemistry

PATENT STATUS

Country	Туре	Number	Dated	Case
Patent Cooperation Treaty	Published Application	WO202074381A1	04/22/2021	2019-967

CONTACT

Donna M. Cyr cyr@tia.ucsb.edu

tel: .

INVENTORS

- McFarland, Eric W.
- ► Su, Shizhao
- ► Tangeysh, Behzad

OTHER INFORMATION

KEYWORDS

Chlorine, Hydrogen, Molten salt, Deacon, chemical looping, upcycle, Cl2, HCl, industrial chemistry

CATEGORIZED AS

- ► Materials & Chemicals
 - ▶ Chemicals
 - Other

RELATED CASES

2019-967-0

University of California, Santa Barbara
Office of Technology & Industry Alliances
342 Lagoon Road, ,Santa Barbara,CA 93106-2055 |
www.tia.ucsb.edu
Tel: 805-893-2073 | Fax: 805.893.5236 | padilla@tia.ucsb.edu

in

© 2021, The Regents of the University of California Terms of use Privacy Notice