

Technology Development Group

Available Technologies

Contact Our Team

Request Information

Permalink

A Battery-Less Wirelessly Powered Frequency-Swept Spectroscopy Sensor

Tech ID: 31987 / UC Case 2019-847-0

SUMMARY

UCLA researchers in the Department of Electrical and Computer Engineering have developed a wirelessly powered frequency-swept spectroscopy sensor.

BACKGROUND

Wireless power transfer is in increasing demand as the development of network sensors and bio-implantable devices gain popularity.

Integration of a vast network of sensors with miniaturized sensor nodes is essential to power minimally intrusive medical implants. Among current energy sources, far-field electromagnetic radiation performs better than near field inductive coupling due to larger operating distances and less path loss. However, large external antennas are needed by far-field RFID which can easily exceed 10 cm² in area, and cause interference from TX to RX. A far-field RFID systems with reduced size and improved performance is highly needed.

INNOVATION

UCLA researchers have developed a fully integrated wirelessly powered microchip with a small footprint of 2.47mm². The chip includes an energy-harvesting front-end, a power management unit, a super-harmonic injection-locked oscillator, and on-chip receiving and transmitting antennas. The chip was successfully developed and achieved a maximum operating distance of 8cm, a 22% locking range from 4 to 5GHz, and a phase noise of -93dBc/Hz at 100Hz offset. The large locking range allowed for spectroscopy measurements on a variety of materials and fluids.

APPLICATIONS

- ▶ Medical implants: detection of bleeding, body fluidic, cancerous tissue, etc.
- Industrial monitoring: detection of corrosion, crack, or change in the dielectric.
- ▶ Consumer electronics: fingerprint detection, touch sensors, objects identification, etc.

ADVANTAGES

- ► Extended operating distance
- Enhanced sensitivity
- ▶ Reduced power consumptions from the duty cycle mode
- Large locking range

STATE OF DEVELOPMENT

Device prototyped and characterized. Proof-of-concept spectroscopy measurements performed on various materials and fluids.

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Published Application	20220252506	08/11/2022	2019-847

CONTACT

UCLA Technology Development Group

ncd@tdg.ucla.edu tel: 310.794.0558.

INVENTORS

▶ Babakhani, Aydin

OTHER INFORMATION

KEYWORDS

wireless, power, battery-less, antenna, spectroscopy, energy

CATEGORIZED AS

- **▶** Communications
 - Networking
 - ▶ Wireless
- **▶** Computer
 - ► Hardware
- **▶** Energy
 - Storage/Battery
 - **▶** Transmission
- **▶** Engineering
 - ▶ Engineering
- ► Materials & Chemicals
 - ► Electronics Packaging
- Semiconductors
 - Assembly and Packaging

Sensors & Instrumentation

- ▶ Medical
- ▶ Physical Measurement

RELATED CASES

2019-847-0

- ▶ Vibration Sensing and Long-Distance Sounding with THz Waves
- ▶ Broadband Comb-Based Spectrum Sensing
- ▶ THz Impulse and Frequency Comb Generation Using Reverse Recovery of PIN Diode

Gateway to Innovation, Research and Entrepreneurship

UCLA Technology Development Group

10889 Wilshire Blvd., Suite 920,Los Angeles,CA 90095 tdg.ucla.edu

Tel: 310.794.0558 | Fax: 310.794.0638 | ncd@tdg.ucla.edu

© 2020 - 2022, The Regents of the University of California

Terms of use Privacy Notice

