

Technology Development Group

Available Technologies

Contact Our Team

Request Information

Permalink

Novel Multi-Scale Pre-Assembled Phases of Matter

Tech ID: 29827 / UC Case 2018-362-0

SUMMARY

UCLA researchers from the Departments of Chemistry and Physics have developed a novel method for creating multi-scale pre-assembled phases of matter with customizable symmetries, topologies, and degrees of order and disorder.

BACKGROUND

Microscale and nanoscale structures are important to many applications including biosensors, drug delivery, bio-scaffoldings, material science, industrial chemistry, environmental sensors, and battery technology. The assembly of complex structures is an issue due to the difficulty in manipulating components at such small scales. Therefore, typical structures often need to rely on self-assembling methods, which constrains the possible design space.

INNOVATION

UCLA researchers have developed a novel method to create 2D monolayers or 3D phases of complex multi-scale materials with customizable symmetries, topologies, and degrees of order and disorder. This method allows the use of computer-aided design (CAD) software and lithography to fabricate, position, and orient many shape-designed colloidal particles into a desired complex configuration. For example, this method has been demonstrated to easily generate rings, chiral stars, dendrimers, linear and ring A/B copolymers, honeycomb sheets and lattices, and square mesh lattices. This key breakthrough allows the explicit specification of the desired colloidal particle structure as opposed to relying on the inherent self-assembling properties of the particles.

APPLICATIONS

- ► Complex microscale and nanoscale structures
- ► Condensed-matter materials
- Material science and engineering

ADVANTAGES

▶ Ability to specify desired design through CAD and lithography

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	11,052,700	07/06/2021	2018-362

CONTACT

UCLA Technology Development Group

ncd@tdg.ucla.edu tel: 310.794.0558.

INVENTORS

Mason, Thomas G.

OTHER INFORMATION

KEYWORDS

copolymers

Monolayer, lattice, nanostructure, microstructure, condensed matter, lithography, multi-scale materials, polymers, nanotechnology, colloids,

CATEGORIZED AS

- ▶ Computer
 - ▶ Software
- **▶** Materials & Chemicals
 - ▶ Composites
 - Other
 - ▶ Polymers
- Nanotechnology
 - Materials

RELATED CASES

2018-362-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ▶ Process For Creating Stable Double Emulsions
- ▶ Measuring Size Distributions of Small-Scale Objects
- ▶ Process For Recycling Surfactant In Nanoemulsion Production
- ▶ Method of Making Multicomponent Nanoemulsions
- ▶ Ultrastable Nanoemulsions In Disordered And Ordered States
- ▶ Mechanical Process For Creating Particles Using Two Plates

- ▶ Process For Sorting Dispersed Colloidal Structures
- ▶ Shape-Controlled Particles Having Subparticle Geometrical Features

Gateway to Innovation, Research and Entrepreneurship

UCLA Technology Development Group

10889 Wilshire Blvd., Suite 920,Los Angeles,CA 90095

tdg.ucla.edu

Tel: 310.794.0558 | Fax: 310.794.0638 | ncd@tdg.ucla.edu

 $\ensuremath{\texttt{©}}$ 2018 - 2021, The Regents of the University of California

Terms of use Privacy Notice

