

Technology & Industry Alliances Available Technologies Contact Us

Request Information

Permalink

Aluminum-cladding-free Nonpolar III-Nitride LEDs and LDs

Tech ID: 25604 / UC Case 2007-424-0

BRIEF DESCRIPTION

A nonpolar III-nitride LED or LD that does not require any aluminum-containing cladding layers, because the quantum well active region is thick enough to function as an optical waveguide for the device.

BACKGROUND

Most existing GaN-based edge-emitting laser diodes are c-plane structures. To achieve the most effective optical mode in these devices, the inclusion of aluminum-containing waveguide cladding layers is required, however these layers present significant epitaxial growth challenges as well as reduced material quality and problems for reactor stability and reproducibility.

DESCRIPTION

UC Santa Barbara researchers have created a nonpolar III-nitride LED or LD that does not require any aluminum-containing cladding layers, because the quantum well active region is thick enough to function as an optical waveguide for the device. The exclusion of Al-containing waveguide layers allows for simpler epitaxial growth techniques, helps reduce problems with tensile strain and cracking in Al-containing waveguide layers, and creates higher crystal quality material. The elimination of Al-containing waveguide cladding layers allows for the fabrication of III-nitride-based LDs in the same way as III-nitride-based LEDs.

ADVANTAGES

- ► Higher crystal quality material
- ► Lower threshold current densities
- Reduced voltage operation
- ▶ Longer lifetimes
- ► Lower production costs

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	9,040,327	05/26/2015	2007-424
United States Of America	Issued Patent	8,211,723	07/03/2012	2007-424

CONTACT

University of California, Santa Barbara Office of Technology & Industry Alliances

padilla@tia.ucsb.edu tel: 805-893-2073.

INVENTORS

- Cohen, Daniel A.
- ▶ DenBaars, Steven P.
- Farrell, Robert M.
- ► Feezell, Daniel F.
- ► Kim, Kwang Choong
- Nakamura, Shuji
- Schmidt, Mathew C.
- ▶ Speck, James S.

OTHER INFORMATION

KEYWORDS

indled, GaN, nonpolar, LED, indssl

CATEGORIZED AS

- Engineering
- Energy
 - Lighting
 - ▶ Other
- Optics and Photonics
 - ► All Optics and
 - **Photonics**
- **▶** Semiconductors
 - ▶ Design and Fabrication

RELATED CASES

2007-424-0

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ► Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
- ► Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- ▶ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- ► Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
- ▶ III-Nitride-Based Vertical Cavity Surface Emitting Laser (VCSEL) with a Dielectric P-Side Lens
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- ▶ Defect Reduction in GaN films using in-situ SiNx Nanomask
- ► Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Low Temperature Deposition of Magnesium Doped Nitride Films
- ► Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- ▶ Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- ► Method for Enhancing Growth of Semipolar Nitride Devices
- ► Ultraviolet Laser Diode on Nano-Porous AlGaN template
- Improved Reliability & Enhanced Performance of III-Nitride Tunnel Junction Optoelectronic Devices
- ► Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- ► Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- ▶ High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- ▶ Method for Growing High-Quality Group III-Nitride Crystals
- ▶ Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- Oxyfluoride Phosphors for Use in White Light LEDs
- ▶ Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- (In,Ga,AI)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- ▶ Thermally Stable, Laser-Driven White Lighting Device
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- ▶ Methods for Fabricating III-Nitride Tunnel Junction Devices
- ▶ Low-Droop LED Structure on GaN Semi-polar Substrates
- Contact Architectures for Tunnel Junction Devices
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- ▶ III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material
- ► Growth of Semipolar III-V Nitride Films with Lower Defect Density
- ▶ III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- ► Tunable White Light Based on Polarization-Sensitive LEDs
- ► Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- ► Growth of High-Performance M-plane GaN Optical Devices
- ▶ Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- ► Improved Anisotropic Strain Control in Semipolar Nitride Devices
- Novel Multilayer Structure for High-Efficiency UV and Far-UV Light-Emitting Devices
- ▶ III-V Nitride Device Structures on Patterned Substrates
- ► Method for Increasing GaN Substrate Area in Nitride Devices

- ► High-Intensity Solid State White Laser Diode
- ▶ Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- ► GaN-Based Thermoelectric Device for Micro-Power Generation
- ▶ Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- ▶ LED Device Structures with Minimized Light Re-Absorption
- ► Growth of Planar Semi-Polar Gallium Nitride
- ▶ High-Efficiency and High-Power III-Nitride Devices Grown on or Above a Strain Relaxed Template
- ▶ UV Optoelectronic Devices Based on Nonpolar and Semi-polar AllnN and AllnGaN Alloys
- ▶ Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- ► III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- ► Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD

University of California, Santa Barbara
Office of Technology & Industry Alliances
342 Lagoon Road, ,Santa Barbara,CA 93106-2055 |
www.tia.ucsb.edu
Tel: 805-893-2073 | Fax: 805.893.5236 | padilla@tia.ucsb.edu

© 2015, The Regents of the University of California Terms of use Privacy Notice