

Technology & Industry Alliances Available Technologies Contact Us

Request Information

Permalink

Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices

Tech ID: 25014 / UC Case 2004-495-0

BRIEF DESCRIPTION

A method for fabricating high-quality indium-containing epitaxial layers, heterostructures, and devices based on InGaN growth on GaN substrates.

BACKGROUND

GaN and its alloys (AlGaN, InGaN, AlInGaN) have been established as effective for fabrication of visible and ultraviolet optoelectronic devices and high-power electronic devices. These devices are most often grown along the polar c-direction, using a variety of growth techniques, including molecular beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), or hydride vapor phase epitaxy (HVPE). Growing devices in the polar c-direction results in charge separation, spontaneous polarization, and degraded device performance. Growth of such devices along a nonpolar axis could significantly improve their performance, but InGaN-based devices have previously encountered problems with growth conditions and material quality.

DESCRIPTION

UC Santa Barbara researchers have developed a method for fabricating high-quality indium-containing epitaxial layers, heterostructures, and devices based on InGaN growth on GaN substrates. These InGaN films are grown along the nonpolar direction using a metalorganic chemical vapor deposition technique, and result in the successful creation of violet and near-ultraviolet LEDs and LDs. Previous issues related to the growth of InGaN-based devices, such as gross surface roughening, low indium incorporation, and indium desorption in InGaN heterostructures have been overcome with this technique.

ADVANTAGES

- Variability in layer thickness
- · Violet and near-ultraviolet light emission
- Growth of nonpolar InGaN at a reduced temperature
- · Growth of InGaN layers at or near atmospheric pressure

CONTACT

University of California, Santa Barbara Office of Technology & Industry Alliances

padilla@tia.ucsb.edu tel: 805-893-2073.

INVENTORS

- ► Chakraborty, Arpan
- ▶ DenBaars, Steven P.
- ► Haskell, Benjamin A.
- Keller, Stacia
- Mishra, Umesh K.
- Nakamura, Shuji
- Speck, James S.

OTHER INFORMATION

KEYWORDS

indssl, indled, GaN, thin films

CATEGORIZED AS

- Energy
 - Lighting
- **▶** Semiconductors
 - Design and

Fabrication

RELATED CASES

2004-495-0

- LEDs
- Laser diodes (LDs)

PATENT STATUS

Country	Туре	Number	Dated	Case
United States Of America	Issued Patent	8,882,935	11/11/2014	2004-495
United States Of America	Issued Patent	8,502,246	08/06/2013	2004-495
United States Of America	Issued Patent	7,504,274	03/17/2009	2004-495
United States Of America	Issued Patent	7,186,302	03/06/2007	2004-495

ADDITIONAL TECHNOLOGIES BY THESE INVENTORS

- ► Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
- ► Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- ▶ Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- ▶ Eliminating Misfit Dislocations with In-Situ Compliant Substrate Formation
- ▶ III-Nitride-Based Vertical Cavity Surface Emitting Laser (VCSEL) with a Dielectric P-Side Lens
- ► High-Quality N-Face GaN, InN, AIN by MOCVD
- ► Aluminum-cladding-free Nonpolar III-Nitride LEDs and LDs
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- ▶ Defect Reduction in GaN films using in-situ SiNx Nanomask
- ▶ Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Implantable Light Irradiation Device For Photodynamic Therapy
- ▶ Low Temperature Deposition of Magnesium Doped Nitride Films
- ► Transparent Mirrorless (TML) LEDs
- Improved GaN Substrates Prepared with Ammonothermal Growth
- ▶ Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- ▶ A Structure For Increasing Mobility In A High-Electron-Mobility Transistor
- Method for Enhancing Growth of Semipolar Nitride Devices
- ▶ Ultraviolet Laser Diode on Nano-Porous AlGaN template
- Improved Reliability & Enhanced Performance of III-Nitride Tunnel Junction Optoelectronic Devices
- ▶ Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- ► Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Methods for Locally Changing the Electric Field Distribution in Electron Devices
- ▶ High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- ▶ Method for Growing High-Quality Group III-Nitride Crystals
- ▶ Controlled Photoelectrochemical (PEC) Etching by Modification of Local Electrochemical Potential of Semiconductor Structure
- Oxyfluoride Phosphors for Use in White Light LEDs
- ▶ Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- ► (In,Ga,AI)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- ► Thermally Stable, Laser-Driven White Lighting Device
- ► MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- ► GaN-based Vertical Metal Oxide Semiconductor and Junction Field Effect Transistors
- ▶ Methods for Fabricating III-Nitride Tunnel Junction Devices

- ▶ Low-Droop LED Structure on GaN Semi-polar Substrates
- ► Contact Architectures for Tunnel Junction Devices
- ▶ Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- ▶ Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- ▶ III-Nitride-Based Devices Grown On Thin Template On Thermally Decomposed Material
- ► Growth of Semipolar III-V Nitride Films with Lower Defect Density
- ► III-Nitride Tunnel Junction LED with High Wall Plug Efficiency
- ▶ Novel Current-Blocking Layer in High-Power Current Aperture Vertical Electron Transistors (CAVETs)
- ▶ Iii-N Transistor With Stepped Cap Layers
- ► Tunable White Light Based on Polarization-Sensitive LEDs
- ► Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- ▶ Growth of High-Performance M-plane GaN Optical Devices
- ▶ Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- ▶ Novel Multilayer Structure for High-Efficiency UV and Far-UV Light-Emitting Devices
- ► III-V Nitride Device Structures on Patterned Substrates
- ▶ Method for Increasing GaN Substrate Area in Nitride Devices
- ► High-Intensity Solid State White Laser Diode
- ▶ Nitride Based Ultraviolet LED with an Ultraviolet Transparent Contact
- ► GaN-Based Thermoelectric Device for Micro-Power Generation
- ▶ Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- ▶ LED Device Structures with Minimized Light Re-Absorption
- ▶ Growth of Planar Semi-Polar Gallium Nitride
- ▶ High-Efficiency and High-Power III-Nitride Devices Grown on or Above a Strain Relaxed Template
- ▶ UV Optoelectronic Devices Based on Nonpolar and Semi-polar AllnN and AllnGaN Alloys
- ▶ Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- ▶ III-Nitride Based VCSEL with Curved Mirror on P-Side of the Aperture
- ► Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD
- ▶ III-N Based Material Structures and Circuit Modules Based on Strain Management

