Request Information

Permalink

Method For Preparation Of Micellar Hybrid Nanoparticles For Combined Therapeutic And Diagnostic Medical Applications

Tech ID: 19171 / UC Case 2008-313-0

BACKGROUND

Multifunctional nanoparticles have the potential to deliver both therapeutics and diagnostics to tissues simultaneously using a single nanodevice. To date, several types of hybrid nanosystems have been developed and used *in vitro* for magnetic cell separation and targeting. However, the *in vivo* utility of these nanocomposites may be limited due to poor stability or short systemic circulation times. Furthermore, existing technologies do not adequately allow for co-delivery of a therapeutic and an agent enabling advanced diagnostic imaging.

TECHNOLOGY DESCRIPTION

This invention provides both the composition and a novel method for creating micellar hybrid nanoparticles that exhibit substantial *in vivo* circulation times, allowing them to contain a diverse payload for periods of time sufficient for delivery and subsequent release to a desired tissue. In addition, this technology readily facilitates the simultaneous targeted delivery of both therapeutic and imaging agents to diseased tissue *in vitro* or *in vivo*.

ADVANTAGES

- In-vivo stability allows for prolonged integrity in systemic circulation.
- ▶ Micellar structure allows delivery of a broad array of payloads, including, magnetic particles, quantum dots, or a therapeutic agent.
- ▶ Reduced cytotoxicity of both hydrophobic drugs and nanoparticle itself.
- ▶ Enables co-delivery of therapeutic agents and diagnostic agents that enable imaging.

APPLICATIONS

- ▶ Medical imaging
- ► Cancer diagnostics and therapeutics
- ▶ Diagnostic and therapeutics for various diseases
- ▶ Vaccines

STATE OF DEVELOPMENT

This technology is offered exclusively or nonexclusively for U.S. and/or worldwide territories. A commercial sponsor for potential future research is sought.

This technology has been used *in vitro* and *in vivo* to deliver an anti-cancer agent and two types of nanoparticles that aid in fluorescence and magnetic resonance imaging to diseased tissue (see reference below).

RELATED MATERIALS

▶ Park JH, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2008). Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed Engl. 47(38):7284-8. - 08/11/2008

CONTACT

University of California, San Diego Office of Innovation and Commercialization innovation@ucsd.edu tel: 858.534.5815.

OTHER INFORMATION

KEYWORDS

drug delivery, biological imaging,
cancer, diagnostics, nanotechnology,
nanoparticles, micelle

CATEGORIZED AS

- Medical
 - ▶ Delivery Systems
 - Diagnostics
 - Disease: Cancer
- ▶ Nanotechnology
 - NanoBio

RELATED CASES

2008-313-0

University of California, San Diego
Office of Innovation and Commercialization
9500 Gilman Drive, MC 0910, ,

La Jolla,CA 92093-0910

Tel: 858.534.5815
innovation@ucsd.edu
https://innovation.ucsd.edu

Fax: 858.534.7345

© 2009 - 2012, The

Regents of the University of

California

Terms of use

Privacy Notice