
UNIVERSITY OF CALIFORNIA
Santa Barbara

Towards Anywhere Augmentation

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Stephen DiVerdi

Committee in Charge:

Tobias Höllerer, Ph. D., Chair

Matthew Turk, Ph. D.

Yuan-Fang Wang, Ph. D.

George Legrady, M. F. A.

September 2007

The Dissertation of
Stephen DiVerdi is approved:

Matthew Turk, Ph. D.

Yuan-Fang Wang, Ph. D.

George Legrady, M. F. A.

Tobias Höllerer, Ph. D., Committee Chairperson

June 2007

Towards Anywhere Augmentation

Copyright c© 2007

by

Stephen DiVerdi

iii

Progress isn’t made by early risers. It’s made by lazy men

trying to find easier ways to do something.

Robert Heinlein (1907-1988)

iv

Acknowledgements

There are many people without whom this thesis would not be possible. I

would like to thank my advisor, Tobias Höllerer for being a constant source of

guidance and encouragement over the last five years – without him, I would have

completely missed out on the world of augmented reality, as well as all the other

interesting projects he put in front of me. Thank you to the rest of my committee,

Matthew Turk, Yuan-Fang Wang, and George Legrady for your ideas, feedback

and criticisms, which has all been instrumental in shaping this work into what it

is today.

Thank you to the many collaborators in the lab over the years:

Jason Wither, for being there over the years to bounce ideas off of and keep

me looking at things from a fresh perspective,

Mathias Kölsch, for his advice in the earlier years and for going through it all

first,

Cha Lee for helping me keep an upbeat attitude at the end and carrying on

the tradition,

My IGERT collaborators, Ethan Kaplan and MarkDavid Hosale, for helping

me break out of my computer science mold a bit,

v

Everyone on the FogScreen project, Ismo Rakkolainen, Alex Olwal, Nicola

Candussi, Marc Breisinger, and Thomas Klemmer, for two years of demoing the

FogScreen and explaining how it works,

Everyone in the Four Eyes Lab and the IGERT lab over the last few years for

your friendship and input, and most importantly for putting up with me for so

long.

Finally, thank you to my parents, for supporting me even when you had no

idea what I was working on, and even though it wasn’t chemistry.

This research was funded in part by NSF grant #IIS-0635492, NSF IGERT

grant #DGE-0221713 in Interactive Digital Multimedia, a research contract with

the Korea Institute of Science and Technology (KIST) through the Tangible Space

Initiative Project, and an equipment donation from Microsoft.

vi

Curriculum Vitæ

Stephen DiVerdi

Education

2006 Master of Science in Computer Science, University of California,

Santa Barbara.

2002 Bachelor of Science in Computer Science, Harvey Mudd College,

Claremont, California.

Experience

2005 – 2007 Software Developer, WorldViz Inc..

1999 – 2007 Graduate Research Assistant, University of California, Santa Bar-

bara.

1999 – 1999 Software Developer, Adobe Systems Inc..

1998 – 2006 Teaching Assistant, University of California, Santa Barbara.

Selected Publications

Stephen DiVerdi, Daniel Nurmi, Tobias Höllerer, “ARWin - A Desktop Augmented

Reality Window Manager,” In Proc. Intl. Symp. on Mixed and Augmented Reality,

October 2003.

vii

Stephen DiVerdi, Daniel Nurmi, Tobias Höllerer, “A Framework for Generic Inter-

Application Interaction for 3D AR Environments,” In Proc. Intl. Augmented Reality

Toolkit Workshop, October 2003.

Stephen DiVerdi, Tobias Höllerer, Richard Schreyer, “Level of Detail Interfaces in an

Augmented Reality Application Environment,” In Proc. Intl. Symp. on Mixed and

Augmented Reality, November 2004.

Stephen DiVerdi, Tobias Höllerer, “Image-space Correction of AR Registration Errors

Using Graphics Hardware,” In Proc. IEEE Virtual Reality, March 2006.

Jason Wither, Stephen DiVerdi, Tobias Höllerer, “Using Aerial Photographs for Im-

proved Mobile AR Annotation,” In Proc. Intl. Symp. on Mixed and Augmented Reality,

October 2006.

Stephen DiVerdi, Tobias Höllerer, “GroundCam: A Tracking Modality for Mobile Mixed

Reality,” In Proc. IEEE Virtual Reality, March 2007.

Tobias Höllerer, Jason Wither, and Stephen DiVerdi, “Anywhere Augmentation: To-

wards Mobile Augmented Reality in Unprepared Environments,” In G. Gartner, M.P.

Peterson, and W. Cartwright (Eds.), Location Based Services and TeleCartography, Se-

ries: Lecture Notes in Geoinformation and Cartography, Springer Verlag, 2007.

viii

Abstract

Towards Anywhere Augmentation

Stephen DiVerdi

For Augmented Reality (AR) technologies to experience wide-spread adoption,

the barrier to entry must be reduced significantly. In particular, setup costs of

new systems in new environments are prohibitive for high-fidelity augmentation.

The goal of this thesis is to take first steps towards an overall reduction in these

costs.

The main AR challenges that I focus on in this thesis are realistic lighting

of virtual geometry, registration of polygons with the scene, tracking a user in a

mobile context, creation of 3D annotations, and acquisition of the scene lighting

environment. Each of these challenges is a fundamental component of many AR

systems that commonly requires laborious setup in new environments. The con-

tributions presented in this thesis directly address these challenges, lowering the

startup costs.

My first contribution is to enable more realistic lighting in AR applications

by dynamically measuring the lighting environment to accurately shade virtual

objects, and to use the video image to facilitate application of virtual light sources

to dynamic physical geometry. Realistic lighting also depends on accurate reg-

ix

istration of polygons with physical objects. My second contribution reduces the

impact of registration errors for these polygons by shifting polygon edges to match

image intensity edges.

For mobile AR systems, high quality wide-area tracking is necessary. My

third contribution is the GroundCam, which combines a camera pointed at the

ground, used as an optical mouse, with a GPS unit for untethered, high quality

position estimation. Good position estimates are needed to accurately create 3D

annotations in the outdoor scene, which is what my fourth contribution focuses

on. The aerial annotator system uses aerial photographs as a second viewpoint to

enable easy annotation placement in outdoor scenes. Finally, my fifth contribution

is Envisor, an application that allows users to quickly acquire environment maps

of these scenes with just a head-worn or hand-held camera.

To facilitate the work in this thesis, I developed two frameworks for conducting

AR research. ARWin is an indoor desktop system that acts as a 3D application

window manager, and is rapidly-deployable in new environments. Outdoor, mobile

research is conducted within ARagorn, a wearable computing platform built with

inexpensive, commonly-available hardware.

x

Tobias Höllerer, Ph. D.

Dissertation Committee Chair

xi

Contents

Acknowledgements v

Curriculum Vitæ vii

Abstract ix

List of Figures xiv

List of Tables xx

1 Introduction 1

1.1 Document Outline . 1
1.2 Problem Description . 2
1.3 Anywhere Augmentation . 4
1.4 Thesis Overview . 6

2 Desktop AR 9

2.1 System . 10
2.2 Common Illumination . 12

2.2.1 Rendering with Physical Light 14
2.2.2 Rendering with Virtual Light 16
2.2.3 Common Illumination Results 19

2.3 Registration Error Correction . 20
2.3.1 Edge Detection . 23
2.3.2 Edge Searching . 24
2.3.3 Edge Smoothing . 26
2.3.4 Rendering . 28
2.3.5 Registration Error Correction Results 29

xii

2.3.6 Registration Error Correction Discussion 32
2.4 Desktop AR Summary . 34

3 Mobile AR 36

3.1 System . 37
3.2 Aerial Augmentation . 38

3.2.1 Annotation Interface . 40
3.2.2 Feature Extraction . 41
3.2.3 Aerial Augmentation Results 46

3.3 GroundCam . 48
3.3.1 Optical Flow-Based Tracking 49
3.3.2 GPS Coupling . 51
3.3.3 Slip Compensation . 54
3.3.4 GroundCam Results . 55

3.4 Remote Explorer . 60
3.5 Panorama Building . 62

3.5.1 Background . 64
3.5.2 Vision-based Tracking . 71
3.5.3 Landmark Features . 78
3.5.4 Hybrid Tracking . 82
3.5.5 Cubemap Projection . 84
3.5.6 Gap Avoidance and Filling 88
3.5.7 Application to Visualization 96
3.5.8 Panorama Building Results 98
3.5.9 Error Analysis . 110

3.6 Mobile AR Summary . 125

4 Conclusions 127

4.1 Contributions . 129
4.2 Future Work . 130

4.2.1 Hybrid Light Map and Geometry 131
4.2.2 Realistic Outdoor Visualization 137

4.3 Closing Remarks . 138

Bibliography 139

xiii

List of Figures

1.1 A brief overview of the research areas related to Anywhere Aug-
mentation. The areas of my contributions have dark borders. 5

2.1 A typical ARWin desktop, with clock, weather station and graph-
ing calculator applications attached to markers in the environment. . . 12
2.2 A person wearing the ARWin HMD, a Sony LDI-D 100B with a
Point Grey Dragonfly camera. 13
2.3 A virtual teapot and spotlight. The teapot has a gold metal ma-
terial and is lit by both the environment and a blue spotlight overhead.
The spotlight also illuminates the physical table below. 14
2.4 A virtual torus with an unpolished gold material, illuminated by
the physical environment. 16
2.5 An ARToolKit marker with a light probe attached. The bullseye
shows the marker has been recognized. 17
2.6 A physical table and wire illuminated with a virtual spotlight co-
incident with the physical illumination. The top half is using alpha
blending, while the bottom half is using the custom shader. Note that
with the shader, highlights are brighter and shadows are darker. 19
2.7 An input polygon is drawn in thick black. The dotted circles
around each vertex shows the tracking error estimates. The blue re-
gion is guaranteed to be part of the polygon, while the red region is
uncertain. 24
2.8 For each pixel along the input polygon edge (shown in blue), a
perpendicular line of pixels (shown in red) is searched for edges in the
image. At the corner, these search lines extend radially from the internal
corner. 24

xiv

2.9 An example of the detected edge results, before smoothing. The
red-blue edge shows severe fraying due to the low contrast image edge
– global smoothing is necessary. The red-green edge has much more
isolated noise and would benefit from localized smoothing. The blue-
green edge is an ideal result of the detection. 26
2.10 Comparison of results. Top to bottom: The original polygon edge,
the detected edge, and the smoothed detected edge. 30
2.11 Comparison of results. Left to right: The original overlaid poly-
gons, and the corrected result. 31
2.12 Comparison of results. Left to right: The original overlaid poly-
gons, and the corrected result. 31

3.1 The ARagorn base wearable system hardware. An Alienware Area-
51 m5500 laptop (worn in a backpack), an SVGA Sony Glasstron PLM-
S700E display, a Point Grey Firefly firewire camera, An InterSense In-
ertiaCube2 orientation tracker, a Garmin GPS 18 receiver, and an Er-
goTouch RocketMouse. 38
3.2 A user wearing the ARagorn system to annotate an outdoor scene. 39
3.3 Outputs of each of the automatic feature detectors. Left to right,

top to bottom: (a) The Harris corner transform is applied at multiple
scales and summed together. (b) Corner features are selected from the
local maxima of the continuous function. (c) Coherent line segments ex-
tracted from the output of Canny edge detection. (d) Edge features are
selected from these line segments, weighted by their gradient magnitude.
(e) After segmenting uniform color regions, components are merged and
represented by their bounding boxes. (f) Region features are selected
from components by size, intersection and distance from the center. . . 43
3.4 The modified ARagorn wearable setup for GroundCam tracking.
We use a Unibrain Fire-i 400 camera, an InterSense InertiaCube2 orien-
tation tracker, and a Garmin GPS 18 receiver. 49
3.5 Model of the camera setup. F is the camera’s horizontal field of
view, and H is the height of the CCD from the ground. It is assumed
the camera is oriented perpendicular to the ground. 52

xv

3.6 System diagram of the complementary Kalman filter. The differ-
ence between the GPS signal and the current estimate is used by the
Kalman filter to create an error estimate. A camera and orientation
tracker are combined in the GroundCam, which outputs a position that
includes some systematic error (drift). The Kalman filter’s error esti-
mate is subtracted from the GroundCam’s position to create a new po-
sition estimate. While the Kalman filter is updated infrequently (1Hz),
a new position estimate is generated for each GroundCam update (30Hz). 53
3.7 Different types of terrain with example slip rates. Left to right, top

to bottom: asphalt (65%), concrete (80%), grass (20%), gravel (32%),
wood (24%), carpet (48%). Slip rates depend on speed, jitter, lighting
and debris, in addition to texture contrast. 56
3.8 A trial run of the GroundCam with and without slip compensation,
with hand-labeled ground truth. The trial was 72 seconds in duration
over asphalt, and had a slip rate of 63%. Originally, the RMS error was
7.0m; with slip compensation, the RMS error is 4.8m. 57
3.9 A trial run of the GroundCam coupled with GPS. The run was 90
seconds in duration, over wood, gravel and concrete terrain, and included
avoiding obstacles and going up and down stairs. The slip rate was 30%. 57
3.10 A trial run of the GroundCam coupled with GPS, with hand-
labeled ground truth. The run was 81 seconds long, over concrete and
asphalt, along a rectangle 18m long by 12m wide. The slip rate was
80% and RMS errors for the GroundCam, GPS, and filtered signals are
5.5m, 1.9m, and 1.9m respectively. 58
3.11 The basic topology of the world model constructed by the world
building preliminary implementation, with the user’s field of view rep-
resented by the yellow triangle. Discrete nodes are connected based on
spatial and temporal distance, and may not reflect the actual visibility
of one position from another, as around sharp corners. 59
3.12 From the first person view, the user can see the aerial view in the
inset in the lower-left corner of the screen. The adjacent locations the
user can navigate to are indicated by blue arrows emanating from the
bottom of the screen. 60
3.13 A video frame with the features overlaid. Green features have been
inliers for many frames, yellow have been inliers for a few frames, and
red are outliers. Features with circles around them are landmarks. The
white lines show each features’ recent history. 72

xvi

3.14 Two examples maps of landmarks distributed around the camera’s
position. Landmarks are blue circles, and the yellow or purple frustum
represents the camera’s current field of view. In the camera’s field of
view, the current set of tracked features can be seen in green, yellow
and red. 78
3.15 A portion of the cubemap after the camera has been rotated to
complete a circle. The black lines near the left and right sides of the
image mark the edges of the cubemap face. 84
3.16 An example video frame with inlier (yellow and green) and outlier
(red) features marked, and the associated alpha mask used for projec-
tion. As features are masked out until they have been inliers for multiple
consecutive frames, some of the yellow features are still masked out. . . 85
3.17 On-screen feedback in the form of arrows around the video image
direct the user’s acquisition. Left to right: (a) Before panning the cam-
era, all directions need to be acquired still. (b) After the camera has
completed a circular path, the left and right arrows are gone. 89
3.18 Gap searching proceeds by rotating the view vector around each of
8 evenly-spaced vectors perpendicular to the view direction. Here, the
view vector is rotated about the right vector. Along each sample vector
si, the cubemap is sampled to see if there is a gap. 90
3.19 Examples of the texture diffusion for incomplete environment maps.
The black lines show the edges of the cubemap faces. 93
3.20 Layout of the cubemap faces in the atlas texture. The black outline
marks where the cubemap faces are sampled from when applying the
texture diffusion. 94
3.21 Virtual geometry shaded using the acquired environment map from
Figure 3.25(a). The environment map is filtered first to create the ap-
pearance of a silver material with a glossy finish. The teapot is super-
imposed over the acquired environment map. 98
3.22 Accuracy of the frame to frame tracking. After rotating the camera
in a full circle on a tripod, the estimated orientation from the integration
of the relative rotation measurements has error less than 0.2◦. 102
3.23 The tracking accuracy is sufficient to close circular paths without
the characteristic discontinuity. Here, a circular sweep is coming to an
end, and the landmarks put in the map at the start are successfully
being reinitialized as they come back into the field of view (indicated by
the darker, heavier circles). 104

xvii

3.24 Snapshots of the feature tracking for hand-held camera motion
over five minutes. Left to right, top to bottom: (a) Initial feature set.
(b,c,d,e) Tracking maintained through various speeds and orientations,
with landmark reacquisition. (f) The resulting partial environment map
shows the quality of the tracking. 106
3.25 Cylindrical projections of acquired environment maps. Top to bot-

tom: (a) Using a tripod. (b) With automatic exposure and white bal-
ance enabled, creating visible discontinuities due to intensity and hue
differences. (c) Carefully constructed with a hand-held camera in ap-
proximately 3 minutes. Small translations result in errors. 107
3.26 A panorama constructed outdoors with a hand-held camera. . . . 108
3.27 Comparison of camera translation and rotation on scene features.
Left to right: (a) As the camera undergoes translation T , point P in the
scene moves the same distance. The corresponding projected points p
and q show the motion of the feature in the image. (b) Point q can also
be generated by rotating the camera through angle θ. 111
3.28 Induced translation from rotation of the camera about a pivot point
that is offset from the optical center. 111
3.29 Error in rotation measurements in synthetic test of off-center rota-
tion. Error is the average over 360 1◦ rotations. 115
3.30 Average error in the computed absolute orientation during 1◦ ro-
tations versus pixel noise added in to feature positions. 118
3.31 Average error in the coherent RANSAC rotation estimate during
1◦ rotations versus pixel noise added in to feature positions, simulating
the effect of noisy or motion blurred images. 119
3.32 Average similarity of between original descriptors and descriptors
computed with different amounts of pixel intensity noise added, simu-
lating the effect of image noise on landmark reacquisition. 120
3.33 Average error in the measured rotation during 1◦ rotations versus
portion of features with significant coherent noise added, simulating the
effect of large distractions in the scene. 121
3.34 Average error in the measured rotation during 1◦ rotations versus
region of the image features are restricted to, simulating the effect of
insufficient texture creating lopsided feature distributions. 123

4.1 Example constructed geometry for a linear segment of a user’s path.
The dark line is the user’s path. The geometry surrounding it is com-
pletely triangulated, but triangles are omitted for clarity. 134

xviii

4.2 An example of geometry creation based on computed depth of fea-
tures. From the user’s position along the path (the dark line), tracked
features correspond to cast rays in the user’s field of view. These rays
end at the computed depth of the objects they track. The dotted lines
show the distance threshold for infinity. The red lines show the modified
wall geometry and the pop-up polygons generated for foreground objects. 135

xix

List of Tables

3.1 Average times (in ms) of the various stages of Envisor, on three
computers. The preprocessing and tracking are broken up into their
component stages, and timings are presented for each stage as well as
the frame total. The final total is the start to finish for each frame of
the test application. 100
3.2 Measured and estimated errors for real tests with a camera rotating
through a full circle about a pivot point offset from its optical center, in
a nearby scene. The error is the yaw value of the orientation (pitch and
tilt were negligible) when the camera is returned to the initial orientation. 116

xx

Chapter 1

Introduction

Thesis Statement

This thesis work improves the usability of high-fidelity augmented real-

ity in new environments: Novel applications of computer vision, com-

puter graphics, and user interface techniques alleviate setup costs of

desktop and mobile augmented reality applications.

1.1 Document Outline

The introduction to this thesis describes the problem area of Anywhere Aug-

mentation and gives a summary of the contributions of this work. Chapter 2

discusses in detail my approach to the domain of desktop Augmented Reality

(AR), while Chapter 3 focuses on mobile AR. Finally, conclusions and thoughts

on future directions for this work are discussed in Chapter 4.

1

Chapter 1. Introduction

1.2 Problem Description

The steady progress of AR research has resulted in many advances in ba-

sic, enabling technologies for AR applications. Improved tracking, better system

design, and higher quality visuals have all increased the appeal of AR systems.

However, such high-fidelity augmented reality is not without its own limitations.

As system complexity increases, these solutions rely on significant setup costs to

achieve their impressive results. Accurate tracking can require instrumenting the

surrounding environment with fiducials or sensors [52, 81], which then may need

position calibration. Accurate rendering of virtual objects in the physical lighting

environment, called common illumination, often necessitates high dynamic range

light probes to be measured before the system can be used [26, 40, 4]. It is very

common for systems to require detailed geometric models of the scene, to improve

the quality of tracking and rendering results [40, 86]. Finally, sophisticated sys-

tems increasingly depend on expensive, niche hardware in many cases for real-time

performance.

The problem with these high initial costs is that they form a barrier to entry

for AR applications. Potential users are frequently turned away when it becomes

apparent that use of an AR system will require a few days of building, modeling,

instrumenting, calibrating, and measuring, assuming all the required pieces of

2

Chapter 1. Introduction

hardware are on hand. To create an active community of potential developers, it

is important to foster experimentation in AR technologies by making use as simple

as possible. Augmented reality must become a casual technology that people who

are not experts in the field can try out themselves before widespread adoption can

be expected.

The concept behind Anywhere Augmentation, then, is to rephrase the goal of

AR research – rather than ask, “What do we need to get high-quality results?”,

my thesis comes from the opposite direction and asks, “What quality of results can

we achieve with what we already have?” Ideally, an AR system developed with

this goal in mind would be able to be used “out of the box” in a new environment

with no setup necessary. However, it is reasonable to expect some small amount

of initial effort, so long as it does not interfere overall with the experience. Thus,

I focus on systems that take no more than about half an hour – enough time

for quick calibration or semi-automatic acquisition of environment data, but not

enough for the careful measurement and setup work required by AR systems today.

Towards this goal, there are very many avenues of research that may be pur-

sued. Basic technologies such as tracking, automatic modeling, and rendering

algorithms are all important. At the same time, developing applications that

need to be extremely mobile and operate under a wide variety of different condi-

3

Chapter 1. Introduction

tions is important from the user’s side of the field. The breadth of this research

area is explored and narrowed down in the next section.

1.3 Anywhere Augmentation

Certainly, the motivation behind Anywhere Augmentation is not a new one

– experts in the augmented reality field are definitely aware of the limitations

of current technologies, and research has progressed in many areas that have

Anywhere Augmentation implications. However, this thesis represents the first

work to unify technologies, methodologies and applications under the common

banner of Anywhere Augmentation, and to examine the open research problems

from this vantage point.

Figure 1.1 gives an overview of some of the pertinent technologies and how they

inter-relate in this area. In this diagram, there are large groupings that combine

related technologies into sub-fields of Anywhere Augmentation research. “Pose

Tracking” contains methods for providing user position and orientation in indoor

and outdoor environments without relying on environment instrumentation. Work

such as Davison’s SLAM tracking [25] fits in this category. “Lighting Acquisition”

is concerned with measuring and constructing a model of the distribution of light

in a new environment. Similarly, “Geometry Acquisition” deals with creating

4

Chapter 1. Introduction

Light Field

Depth Environment Map

Texutred World Model

Scene Models

Situated Environment

Map

Annotations

Annotation User

Interfaces

Annotation

Content
Automatic Content

Source Aggregation

Explicit User Input

Local vs. Global

Content Sources

Annotation Creation

Environment

Relighting

Virtual Object Lighting

AR Landscaping

Common Illumination

GPS + Accelerometer

GPS + GroundCam

Vision

Terrain Recognition

Accurate Position

Pose Tracking

High-resolution

Omnidirectional

Camera

Omnidirectional +

Directional Cameras

Tracked Directional

Camera

Environment Map

Geometry

Manual Annotation

Aerial Photos

Triangulation

Automatic Modeling

Panoramic

Tour into the Picture

Remote Virtuality

Viewing

(Desktop, Sphere)

Remote Environment

Walkthrough

Myst-Style

Walkthrough

Automatic

Transitioning

Touring System

Virtual Graffiti

Tour into the Picture

Situated Information

(social info, heads-up

display, located ads)

GIS Data

2D Video

Annotation Placement

Annotation View

Management

Lighting Acquisition

Geometry Acquisition

ARToolKit

Light Probe

Image Space Error

Correction

AR Route Finding

Overlay

Navigation for the

Blind

Navigation Aides

Figure 1.1: A brief overview of the research areas related to Anywhere Augmen-
tation. The areas of my contributions have dark borders.

5

Chapter 1. Introduction

a model of the geometry of a scene. These two components combine to form

a variety of different “Scene Model” representations, which can then enable a

variety of different applications that need both lighting and geometry information.

For example, “Common Illumination” techniques use scene models to seamlessly

integrate the appearance of physical and virtual objects. “Annotation Creation”

deals with the placement of AR content, in the form of situated metadata within

the environment – a whole host of applications and techniques relates specifically

to creating and consuming this type of content.

In order to make my thesis feasible, the scope of the Anywhere Augmentation

research area must be carefully selected. In the next section, I outline the specific

contributions that make up my thesis.

1.4 Thesis Overview

Overall, my thesis is a first step in a selection of the important Anywhere

Augmentation technologies, towards a generally improved AR application expe-

rience. The work can be broken up roughly into contributions in the areas of

desktop AR and mobile AR. While most of my work can be applied in both en-

vironments, applications that exist in both domains are exceedingly rare, so the

dichotomy reflects how the underlying technologies will be developed and evalu-

6

Chapter 1. Introduction

ated. The contributions in desktop AR are presented in Chapter 2, and mobile

AR in Chapter 3.

The aim of my work in desktop AR is to improve the quality of visuals expe-

rienced by users in a small, controlled space such as a user’s office. This setting

poses limited tracking and data acquisition challenges, but has significant inter-

face and rendering problems which I focus on. In particular, I present a desktop

AR application framework, in which I demonstrate an intuitive, tangible user in-

terface for desktop work. This framework is also used for techniques that address

the common illumination problem for dynamic scenes, and a technique to reduce

the visual impact of registration errors. The system relies only on an inexpensive

camera and head-worn display, and can quickly be set up in any office setting.

My contributions in mobile AR are focused on the challenges presented by

the size of the environments applications operate in. Specifically, the large space

makes online data acquisition an important component of a mobile system, for con-

tent creation applications as well as visualizations. I present an outdoor, wearable

system framework that is used to develop techniques appropriate to this setting.

Within this framework, my first contribution is an application that takes advan-

tage of ubiquitously available aerial photographs to augment the user’s interface

for 3D annotation. As accurate, wide-area tracking is critical to mobile AR, my

next contribution is a computer vision tracking modality that operates over larger

7

Chapter 1. Introduction

areas with less error than previously possible. The third contribution is a frame-

work for remote exploration and mapping of an environment by a scout user with

a wearable computer. Finally, the fourth contribution extends the abilities of such

a remote explorer system with online environment map construction based on a

user’s tracked video stream, creating a light probe representation of the acquired

scene to be used to shade virtual geometry placed in the scene.

8

Chapter 2

Desktop AR

The first component of my thesis work focuses on augmented reality in an indoor

setting. I developed a framework for prototyping interfaces and techniques for

desktop computer use enabled by augmented reality. The work consists of a

tangible user interface, two techniques for the common illumination problem, and

an algorithm for correcting registration errors. The result is a system that allows

for rapid deployment of higher-fidelity desktop AR applications than previously

possible. This chapter summarizes this result, and further information can be

found in the related publications [31, 32, 30, 27, 28].

Within the desktop AR framework, my contributions are

• a rapidly-deployable application window manager that makes use of an ex-

isting tracking solution for its tangible interface,

• a technique for common illumination between physical and virtual worlds in

dynamic environments, and

9

Chapter 2. Desktop AR

• a post-processing filter to reduce the visual impact of registration errors for

impostor polygons.

Each of these contributions is directly relevant to the goals of Anywhere Aug-

mentation, as outlined in the introduction, by improving the visual fidelity and

interface usability for applications with low setup costs.

2.1 System

The framework I developed is called ARWin, which stands for Augmented Re-

ality Window Manager. The goal was for ARWin to act as a standard desktop

window manager, which is responsible for handling the placement, maintenance

and rendering of application windows, as well as handling input event distribution.

Traditionally, window managers are 2D WIMP-based (Windows, Icons, Menus,

and Pointers) interfaces. There are a few exceptions (e.g., Project Looking Glass

[82] and the Task Gallery [87]) that have tried to extend the windows metaphor

into 3D environments with some success. ARWin extends the 3D window man-

ager concept by using augmented reality to place applications in the space above

a user’s physical desk, where they can coexist with real objects. While there are

other AR application environments, such as Studierstube [93], the novel aspects

of ARWin are its transparent integration of pre-existing 2D X Windows applica-

10

Chapter 2. Desktop AR

tions, and its use of the ARToolKit [80] to create a one-to-one mapping between

physical and virtual objects, creating a tangible user interface for the organization

of desktop applications. This interface also allowed simple interactions between

applications based on proximity of their physical markers.

Aside from the interface, another major decision in the ARWin design was

whether to use video or optical see-through for the display technology. This has

important implications to Anywhere Augmentation, and in the end video see-

through was selected. While optical see-through provides a better unobstructed

view of the real world, which can be a stronger advantage in some environments

where peripheral vision is important, it also includes significant calibration costs

per-use and has a difficult time operating in varying lighting conditions. Video

see-through is more limited in terms of field of view and unencumbered operation,

but nicely avoids regular calibration and is less effected by changes in illumination.

The use of the ARToolKit with video see-through display technology means

that the ARWin system is rapidly deployable to be used in new environments

without difficulty. One advantage of the ARToolKit’s tracking is that the fiducials

can be simply printed on a regular office ink jet or laser printer and are ready for

use in a few minutes. No calibration of the camera / display system is necessary, so

once the markers are printed, a user can start working with ARWin immediately.

11

Chapter 2. Desktop AR

Figure 2.1: A typical ARWin desktop, with clock, weather station and graphing
calculator applications attached to markers in the environment.

Since tracking is accomplished entirely by the camera’s view of the fiducials, there

is no instrumentation or measurement of the environment necessary as well.

The ARWin framework was developed in conjunction with Daniel Nurmi, who

was responsible for the mechanism to support unmodified X Windows applications

within ARWin. My contribution was the resource, event, and display manager,

the user interface, and the hardware system construction.

2.2 Common Illumination

Common illumination is the problem of rendering physical and virtual objects

with a common lighting environment – that is, physical and virtual light sources

will affect physical and virtual objects, as if they were seamlessly integrated. This

is an important component of improving the visual fidelity of AR applications, as

12

Chapter 2. Desktop AR

Figure 2.2: A person wearing the ARWin HMD, a Sony LDI-D 100B with a
Point Grey Dragonfly camera.

virtual objects do not look real unless they are properly lit the same as other real

objects. While there has been work on common illumination previously [40, 60,

4, 36, 26], it has focused on techniques that require significant setup, including

careful modeling of the entire scene, high dynamic range light probe acquisition,

and global illumination computations that can hinder interactive framerates. Even

less work has been done that allows virtual objects to affect the lighting of physical

objects, generally focusing on casting shadows [104]. These techniques always

require detailed scene geometry upfront.

The proposed contribution of this portion of portion of my thesis is a tech-

nique to acquire and render virtual geometry with a dynamic physical lighting

environment, and a technique to illuminate approximated physical geometry with

virtual light sources, towards the goal of Anywhere Augmentation by drastically

13

Chapter 2. Desktop AR

Figure 2.3: A virtual teapot and spotlight. The teapot has a gold metal material
and is lit by both the environment and a blue spotlight overhead. The spotlight
also illuminates the physical table below.

reducing the initial setup required over previous systems. The results can be seen

in Figure 2.3.

2.2.1 Rendering with Physical Light

Physical illumination of virtual objects is achieved by acquiring an image of a

light probe of the scene, and then processing this light probe and applying it as a

spherical texture map to geometry to create various material responses. The light

probe consists of a small (2.75 inch diameter) silver sphere (a Christmas ornament)

mounted on a marker (see Figure 2.5). The screen position of the sphere can be

determined from the transformation matrix for the marker as reported by the

ARToolKit, and these pixels are copied from the video stream into a texture.

The texture then contains a typical environment map, which can be applied using

14

Chapter 2. Desktop AR

regular OpenGL sphere mapping for mirror reflections of the environment. For

more general rendering of different materials, the environment map texture must

be filtered.

In order to be able to dynamically update the filtered environment maps, I

use a technique from Ashikhmin and Ghosh [6] that creates a rough estimate of

Phong integrated environment maps by using OpenGL’s built-in mipmap gen-

eration capabilities. Before the environment map texture is created, automatic

mipmap generation is enabled to quickly create smaller, box filtered versions of

the environment map. I can then select which level to render with by specify-

ing the minimum mipmap level. This creates a rough approximation of a glossy

material.

With a set of filtered environment maps, ranging from specular to diffuse,

arbitrary material properties can be simulated by selecting the appropriate maps

and blending them together. The material’s shininess factor determines which

level of glossy specular map is blended with the diffuse map. Samples from these

textures modulated by the material’s diffuse and specular responses represent

the material’s physical reflectance, which is then added to any virtual lighting

calculations and material texture maps for the final reflectance value. While this

technique is not physically accurate, it does produce convincing results (see Figure

2.4).

15

Chapter 2. Desktop AR

Figure 2.4: A virtual torus with an unpolished gold material, illuminated by the
physical environment.

2.2.2 Rendering with Virtual Light

The obvious way to add lighting to physical geometry is to create a replica of

the physical objects in the virtual world, calculate the lighting for this proxy, and

then add the difference into the image of the environment. However, acquiring

detailed scene geometry is a large setup cost , and it must be repeated whenever

the environment changes. To address this issue, my proposed technique approx-

imates lighting of the environment using a significantly simplified model of the

physical objects present. For example, the surface of a desk is modeled as a flat

plane, and low-profile objects on the desk such as a mouse or keyboard do not

need additional modeling. A monitor can be approximated with a single scaled

16

Chapter 2. Desktop AR

Figure 2.5: An ARToolKit marker with a light probe attached. The bullseye
shows the marker has been recognized.

cube. In fact, for most large objects, a simple scaled box is sufficient, and small

objects generally do not need modeling. Given the low complexity of this sort of

rough scene geometry, it is a much simpler task to create a proxy of the physical

environment in short order.

Since flat polygons are used to approximate rough geometry, the virtual illu-

mination must be adjusted to properly account for fluctuations in height. Simple

OpenGL blending creates the appearance of illumination of a flat surface, and so

is not sufficient. However, the image of the scene captured from the camera pro-

vides useful information when projected on top of the simple scene model. Each

polygon in the model has a physically lit texture associated with it. If the physical

17

Chapter 2. Desktop AR

illumination is known then the pattern of highlights and shadows on the texture

can be associated with the dominant illumination direction. This information rep-

resents the bumps along that particular direction, and the virtual illumination can

be modified to take them into account. If the virtual light is placed near the area

of brightest physical illumination, then it is clear that the virtual light will have

the same highlights and shadows as are present in the projected video texture.

Conversely, if the virtual light placed opposite the brightest physical illumination,

the highlights and shadows will be opposite.

Therefore, a more accurate bump-mapped virtual illumination can be calcu-

lated using the projected video texture. The flat polygon shaded value is called

the “additive factor”, A, and the intensity of the projected video texture is the

“multiplicative factor”, M . Then the dot product of the virtual light vector, L,

and the dominant lighting direction, E, determines the contribution of each of

these factors to the final response, R, using linear interpolation / extrapolation:

α = L · E (2.1)

R = (1.0 − α)A+ αM (2.2)

18

Chapter 2. Desktop AR

Figure 2.6: A physical table and wire illuminated with a virtual spotlight coin-
cident with the physical illumination. The top half is using alpha blending, while
the bottom half is using the custom shader. Note that with the shader, highlights
are brighter and shadows are darker.

This computation is done in a fragment shader, taking advantage of pro-

grammable graphics hardware to avoid any significant performance hit. The re-

sults can be seen in Figure 2.6.

2.2.3 Common Illumination Results

As a result of these techniques, improved visual fidelity is possible over tradi-

tional AR application rendering with little upfront effort on the part of the user.

The use of a tracked light probe for physical illumination of virtual objects al-

lows for dynamic updates to changes in lighting, for virtual objects with a greater

sense of presence within the physical environment. The use of filtered environment

maps also improves the shading quality of virtual objects, giving them a distinctly

19

Chapter 2. Desktop AR

more realistic appearance. Using virtual lights to affect physical objects is a less

common application task, but as augmented reality becomes more common, ex-

perimentation along these lines will develop unforeseen applications areas in which

a complete common illumination model will be important, and virtual lighting of

physical objects is a critical component of that model. The presented technique

allows unmodeled geometry to be roughly lit, giving a more realistic impression

than previously possible without carefully modeling and tracking all scene ele-

ments. In dynamic environments with large amounts of movable geometry such

as a work desk, offline modeling is simply not feasible, so this technique fills an

important role for these types of applications.

2.3 Registration Error Correction

One side effect of the goals of Anywhere Augmentation is that the lack of

setup cost can mean high-quality tracking solutions must be forgone in favor of

faster methods. The result is that registration errors may be more common than

in current top of the line systems. Such errors are especially problematic when

virtual and physical features should coincide, such as when virtual geometry is

drawn directly on top of a physical object to affect its appearance, which may

occur in applications such as highlighting of an object using wireframe outlines or

20

Chapter 2. Desktop AR

colored polygons, halo glow around objects, re-texturing of physical objects, and

re-lighting with impostor polygons.

To compensate for errors introduced by faster tracking methods, I propose

a post-processing image-space filter that can be applied to AR applications re-

gardless of tracking technology, to consistently reduce the visual impact of these

errors. The basic assumption of the technique is that geometric edges in an AR

scene model correspond with edges in the physical world. Edges are detected in

an acquired video of the scene. For each edge in the virtual model, the algorithm

searches a region determined by a per-vertex tracking-error estimate (provided by

the application) for strong nearby edges, and then smooths the detected edges.

Finally, the original model polygons are rendered, clipped against the detected

edges so they approximate the video features. The result is virtual objects that

more closely match strong features in the physical scene, and experience less jitter

in their positions.

It is important to note that the tracking result is not modified and no rigid

transformation is performed. The technique is an image space warp that is per-

formed as a post-processing step, which is fundamentally different from techniques

which use image edges as part of the tracking computation. This is different from

established tracking technologies that use image edge information to refine their

pose estimates [55, 56, 25, 21]. The difference is my proposed technique is gener-

21

Chapter 2. Desktop AR

ally applicable to a wide variety of AR tracking technologies, with easier integra-

tion than would otherwise be possible by allowing loose coupling of image edge

information with other tracking modalities.

The inputs to the algorithm are: a list of quad polygons, a list of per-vertex

position error estimates, and an image of the physical scene. In order, the algo-

rithm

1. performs edge detection on the scene image,

2. searches edge image within polygon error regions for strong, similar edges,

3. (optional) smooths individual detected edges, and

4. renders original polygons, clipped to detected edges,

and the output is a visual of the virtual scene with improved geometric registra-

tion:

Per-vertex estimates of tracking error must be provided. Tracker errors can be

propagated through a series of transformations to provide the position and orien-

tation error of a local coordinate system, which can then be applied to individual

vertices to determine a region of the screen where a vertex may exist [19, 63].

These errors are used to determine the search regions for step 2. The underlying

tracking technique is unimportant – all that is needed is an estimate of its error.

22

Chapter 2. Desktop AR

2.3.1 Edge Detection

I rely on established edge detection algorithms for the first step of the tech-

nique. The default algorithm is a GPU implementation of a 3x3 Sobel filter – a

fragment shader samples the texture in the kernel and outputs a color encoding

the gradient direction and magnitude.

I rely on established edge detection algorithms for the first step of our tech-

nique. The default algorithm is a GPU implementation of a 3x3 Sobel filter – a

fragment shader samples the texture in the kernel and outputs a color encoding

the gradient direction and magnitude. This is the standard choice for reasons of

speed, but Sobel filtering suffers from the lack of any edge continuity enforcement,

so edges can become fragmented easily.

An alternate choice is OpenCV’s Canny function [70], which is a standard CPU

implementation of the Canny edge detection algorithm [15] (GPU implementations

are now available as well [39]). While Canny edge detection does do a better

job in general of finding exact edges by enforcing an edge continuity constraint,

the output is only a binary value, lacking any information about edge strength

or orientation. The results are also very sensitive to the appropriate threshold

values, which require tuning from scene to scene, and possibly even within a

scene, if there is a significant change in lighting. Because of the sensitivity to

23

Chapter 2. Desktop AR

Figure 2.7: An input polygon is drawn in thick black. The dotted circles around
each vertex shows the tracking error estimates. The blue region is guaranteed to
be part of the polygon, while the red region is uncertain.

Figure 2.8: For each pixel along the input polygon edge (shown in blue), a
perpendicular line of pixels (shown in red) is searched for edges in the image. At
the corner, these search lines extend radially from the internal corner.

tuning and binary-only output of Canny edge detection, the Sobel operator is

preferable in general.

2.3.2 Edge Searching

The second step is to search the edge image for strong edges near each polygon

edge. First, back-facing polygons are culled. Per polygon, I project the vertices

to screen coordinates and use the vertex error estimate to determine a region of

24

Chapter 2. Desktop AR

the screen where the vertex may lie (the dotted circles in Figure 2.7). Adjacent

vertices define a search region (roughly the convex hull of the two vertex regions,

shown in red in Figure 2.7) in which the edge can be found. The interior of the

search regions is guaranteed to be part of the polygon regardless of the vertices’

actual positions within the error estimates (the blue region in Figure 2.7).

Once the search regions have been determined, each edge is rendered as a line,

with the search shader activated and the edge image as a texture input. Search

regions are defined in texture coordinates. The search shader walks perpendicular

to the edge, or near corners, radially from the internal region’s corner (see Figure

2.8). It samples the edge image along this path, retrieving that pixel’s edge

magnitude and orientation. A weighting function is applied to these samples, and

the position of the maximum weighted sample is encoded as an offset vector in

the red and green channels of the output color.

w = s ∗
d

dmax

∗ |vg · vs| (2.3)

Sample weights are the product of the edge strength s, a distance term, and an

orientation term (Equation 2.3). The distance term linearly weights the sample

based on distance from the input polygon edge. The orientation term is the

absolute value of the dot product of vg, the gradient vector, and vs, the search

direction vector – if the two vectors are parallel or antiparallel, then the detected

25

Chapter 2. Desktop AR

Figure 2.9: An example of the detected edge results, before smoothing. The
red-blue edge shows severe fraying due to the low contrast image edge – global
smoothing is necessary. The red-green edge has much more isolated noise and
would benefit from localized smoothing. The blue-green edge is an ideal result of
the detection.

edge and the polygon edge are similarly oriented. The final result is a weight value

between 0 and 1, representing the likelihood of the particular sample.

2.3.3 Edge Smoothing

The detected edges are often quite noisy – that is, there are frequent discon-

tinuous jumps between adjacent offsets, which create a “frayed” appearance (see

Figure 2.9). This noise flickers rapidly among frames, creating a displeasing visual

artifact. One possible way to address this problem would be to improve the edge

searching algorithm. Instead, I chose to implement a separate edge smoothing

26

Chapter 2. Desktop AR

step. This is faster than more robust edge searching and allows the smoothing

filter to be modified or removed depending on application needs.

The smoothing step is applied by rendering the polygon edges as lines again,

with the smoothing shader activated and the detected edge offsets from step 2

as a texture input. For each polygon edge, the shader takes regular samples of

the detected edge offset. A running sum of offsets is kept, to determine the mean

offset at the end of the pass. Additionally, a measure of the “noisiness” of the

edge is calculated for each sample and accumulated. Once the walk is complete,

the noisiness measure is examined – if it exceeds a user-specified threshold, the

edge is too noisy and each offset value is replaced by the mean offset. Otherwise,

the original offsets are kept. The mean value is used instead of a more appro-

priate measure such as the median due to the lack of efficient n-element median

algorithms for graphics hardware.

The noisiness measure is based on the second derivative of the detected edge

offsets. At each sample, a 1x3 Laplace filter ([−1, 2,−1]) is applied. The mean

of the absolute values of the second derivatives is the “noisiness” of the detected

edge.

If the smoothing operator were implemented in a fragment shader, for each

fragment, it would need to sample the entire edge and recalculate the mean and

noisiness. For an edge of 100 pixels, this means 10,000 textures samples, which is

27

Chapter 2. Desktop AR

clearly a waste of processor cycles. I avoid this level of redundancy by implement-

ing the smoothing filter in a vertex shader, which is then executed per-vertex, or

twice per edge (since vertex shader outputs are interpolated across the line, the

same result must be computed at both vertices). The results are passed to the

fragment shader via the vertices’ output colors, which are shared among the frag-

ments. This is made possible by using the programmable shader capabilities made

available in NVIDIA’s 6000 series GPUs – specifically, support for vertex texture

sampling. In absence of these graphics hardware capabilities, the smoothing step

can be omitted, or it can be done more slowly in a fragment shader as discussed.

2.3.4 Rendering

After the previous three steps, the result is a smoothed detected edge image

which encodes the per-pixel offset of the detected edge from each polygon’s original

edges. To render the newly deformed polygon, first, the internal region is rendered

normally. Then, the unknown border regions are rendered with the clipping shader

and the detected edge texture as input. In this final pass, each fragment samples

the detected edge image and compares its position to the sample – if it is outside

(determined by the inside and outside boundaries of the search region), its alpha

value is set to zero, but if it is inside, its alpha is unchanged. Near the detected

28

Chapter 2. Desktop AR

edge, alpha values drop off linearly for a smooth polygon border. Since each

rendered pixel does only one texture sample, this pass is very fast.

Alternately, this final pass can be slightly altered to accommodate wireframe

rendering. The polygons’ internal regions are omitted, and the clipping shader

sets pixels’ alpha values based on the distance from the detected edge, for an

antialiased line.

Some filtering of the detected edge image can also be done in this step. Rather

than sampling one pixel for the edge offset, its neighbors can be sampled as well,

and the multiple values are combined to compute the final offset. I implemented

support for 1x3, 1x5 and 1x7 block filters, as well as a 1x3 median filter. As

graphics hardware is designed for this type of filtering, it does not significantly

affect performance.

2.3.5 Registration Error Correction Results

For testing, the post-processing filter was applied within the ARWin frame-

work to overlay a virtual model of a box on top of a physical, tracked box. The

ARToolKit is prone to small errors in orientation estimates, which propagate to

large translational errors for vertices that are far from the marker’s center. With

an NVIDIA GeForce FX 6800GT graphics card, there is a modest 8.2% drop

in framerate, from 61 to 56 frames per second, when processing a pre-recorded

29

Chapter 2. Desktop AR

Figure 2.10: Comparison of results. Top to bottom: The original polygon edge,
the detected edge, and the smoothed detected edge.

640x480 video stream, using all four steps of the technique, with a 1x3 block filter

in the fourth step.

Figure 2.10 shows a comparison of the original polygon edge, the unsmoothed

detected edge, and the smoothed detected edge. The original edge clearly shows

registration errors – because of tracking error, the polygon edge is moved away

from the physical edge, and because of modeling error, the complex shape of the

physical edge is represented by the straight edge of a polygon. Since this is a

high contrast image region, the detected edge matches the physical edge nearly

30

Chapter 2. Desktop AR

Figure 2.11: Comparison of results. Left to right: The original overlaid polygons,
and the corrected result.

Figure 2.12: Comparison of results. Left to right: The original overlaid polygons,
and the corrected result.

perfectly, correcting both the tracking and modeling error. The smoothed edge

loses the ability to correct the modeling error, but is still a marked improvement

over the original edge, due to the tracking correction.

The quality of the unsmoothed edge depends heavily on the edge detection

result. If the edge detection step finds a clear, strong edge within the search region

of the polygon, then the detected edge will be match the image’s edge very closely,

31

Chapter 2. Desktop AR

with very little noise. Unfortunately, in real environments with complex lighting

and low dynamic range video acquisition, low contrast images are commonplace,

making good edge detection difficult. In these cases, the unsmoothed edge result

will be noisy and will jitter from frame to frame, so the smoothed edge result will

be more appropriate. While the smoothed edge may not match the physical edge

as closely, it will be jitter less between frames and be a closer match than the

original polygon edge, improving the visual quality.

2.3.6 Registration Error Correction Discussion

The nature of the design choices we made to implement this technique leads to

some limitations which are important to examine. Foremost is the fact that I do

not modify the tracking result, just the rendering of the polygons. This means that

the technique is not a hybrid vision-based tracking system and cannot correct drift

from other tracking technologies. It also means that polygons are clipped, rather

than moved, so decal textures will not be shifted with the polygon’s position. If

text is texture mapped onto a polygon, the edge of the text will be clipped off,

rather than all of the text being warped slightly. On the other hand, effects such

as per-pixel lighting will not suffer from this effect, as they are calculated uniquely

for each pixel.

32

Chapter 2. Desktop AR

Currently, the per-vertex tracking error estimation is a single float value, which

represents a screen pixel radius. This is a simplistic assumption, as errors are more

likely to be ellipses in screen space. The downside of this simplification is that

the search regions may be too wide, decreasing performance unnecessarily and

possibly getting distracted by edges that are farther away (though that error is

minimized by penalizing distant detected edges in the search shader’s weighting

function). Of course, I also assume the reliability of the tracking error estimate.

In the event that the error is over-estimated, time will be wasted searching larger

regions, and edges may become distracted more easily (though weighting detected

edges by distance reduces this effect). Conversely, if the error is under-estimated,

as the edge search step may not find an edge in the search region, in which case

the original input polygon edge is used. This way the result is ensured to always

be at least as good as the input.

The global nature of our detected edge smoothing can be limiting as well.

In the case that a detected edge is determined to be too noisy and is replaced

by the mean offset edge, the result is a straight line. This means any per-pixel

corrections of modeling error will be lost to avoid the noise. Clearly, it would

be preferable to locally smooth the edge in a feature-preserving way, to keep the

important detected edge features, but lose the distracting noise. One way this issue

is addressed in the current implementation is by allowing the noisiness threshold

33

Chapter 2. Desktop AR

to be specified per-edge by the user. This way the user can judge the modeling

error for an edge and determine about how much noise should be tolerated before

resorting to a straight-line approximation. In my experiences , the edge noise is

a distracting enough artifact that the noisiness threshold is always set to zero,

forcing smoothing on every edge.

Finally, in cases where polygons are viewed from a shallow angle, or when the

tracking error is very large, our algorithm will fail because there will be no known

internal region of the polygon, and the search regions for opposite edges will over-

lap. This can cause confusion with detected edges and can result in non-convex

polygons. To avoid this problem, when the internal polygon has negative area (by

calculating area assuming counter-clockwise vertex ordering), our technique bails

out and the original, unmodified polygon is drawn instead. This avoids visual

artifacts and assures that our result is as least as good as the unmodified input.

2.4 Desktop AR Summary

The ARWin framework demonstrates the power of Anywhere Augmentation

methodologies within a desktop environment. Each of the base technologies and

design decisions focus on quick setup and low overhead, enabling high-quality

results in a rapidly-deployable system. The application of desktop window man-

34

Chapter 2. Desktop AR

aging is a good fit for Anywhere Augmentation goals as well, since it allows users

to immediately work within a familiar environment at any location, similar to

how a laptop computer allows users to carry a known workspace with them to

new locations. ARWin allows the same flexibility and mobility, while adding high

fidelity augmented reality features as well.

35

Chapter 3

Mobile AR

The second component of my thesis work is focused on outdoor, mobile aug-

mented reality. I developed a wearable computing platform designed for rapid

prototyping and implementation of AR applications in an outdoor environment.

Mobile AR directly embodies the spirit of Anywhere Augmentation, by enabling

systems that users can wear in new environments for exploration (e.g., scouting

hazardous locations), content creation (e.g., urban modeling), and content con-

sumption (e.g., navigation directions, situated metadata). The wearable platform,

called ARagorn, enables the development of the mobile AR applications and sup-

porting technologies that are summarized in this chapter. Further details on this

work can be found in the relevant publications [114, 29, 47].

Within this framework, my contributions are:

• an application that uses commonly available aerial photographs as an addi-

tional data source for placement of 3D annotations,

36

Chapter 3. Mobile AR

• a vision-based tracking modality and hybrid wide-area person-tracker with

improved performance,

• a remote exploration system that uses an instrumented scout to acquire

information about an environment for offline viewing, and

• an application that constructs environment maps online and uses them to

shade virtual geometry.

These contributions are all relevant to Anywhere Augmentation, as they either

directly lower the barrier to use of outdoor AR applications, or they are outdoor

applications that demonstrate Anywhere Augmentation principles in useful do-

mains.

3.1 System

The basic ARagorn wearable system can be see in Figure 3.1. At the core

is an Alienware Area-51 m5500 laptop, which is worn on the user’s back. The

display is an SVGA Sony Glasstron PLM-S700E hanging from the front of the

helmet, used in video see-through mode. Mounted directly above the display are

a Point Grey Firefly firewire camera and an InterSense InertiaCube2 orientation

tracker, and on top of the helmet is a Garmin GPS 18 position tracker. User

input is through a hand-held ErgoTouch RocketMouse. All of these devices are

37

Chapter 3. Mobile AR

Figure 3.1: The ARagorn base wearable system hardware. An Alienware Area-
51 m5500 laptop (worn in a backpack), an SVGA Sony Glasstron PLM-S700E
display, a Point Grey Firefly firewire camera, An InterSense InertiaCube2 orien-
tation tracker, a Garmin GPS 18 receiver, and an ErgoTouch RocketMouse.

relatively inexpensive, off-the-shelf components. This system was developed in

collaboration with Jason Wither. I was responsible for the camera, orientation

tracker, and display mounting as well as the data acquisition software, while Jason

made the helmet and backpack system and handled network communication.

3.2 Aerial Augmentation

In this application, the focus is on annotating an outdoor scene from within

the wearable system, providing an appropriate interface to allow accurate markup

in a mobile context. To reduce the amount of manual work that must be done by

the user, the ARagorn system is modified to use aerial photographs of the region

38

Chapter 3. Mobile AR

Figure 3.2: A user wearing the ARagorn system to annotate an outdoor scene.

in conjunction with the wearable’s acquired data. In the current implementation,

0.5m resolution aerial photographs are acquired offline from Google Maps and

stitched together into a single large view of the University of California, Santa

Barbara campus. However, it is possible with a wireless internet connection to

download map data on the fly based on the wearable’s reported GPS coordinates,

enabling the system to work in new environments covered by map services without

an initial setup cost. This allows the user to accurately place 3D annotations from

a single position by providing a means of accurately gauging depth, reducing the

amount of motion necessary by the user to annotate a scene.

With orientation tracking, from a static position a user can easily cast a ray to

select a visible feature in the scene, but setting the depth of that feature is more

difficult. Previous work in this area requires the user annotate the same feature

39

Chapter 3. Mobile AR

from multiple viewpoints to triangulate a position [9, 79], or estimate depth from

a static viewpoint using artificial depth cues [115]. However, commonly available

aerial photographs [41, 116] can be used to allow accurate 3D position input from

a single location. After a user has cast a ray, the system presents the user with

an aerial view of the scene and the cast ray and allows the user to adjust the ray

and set a distance. The result is a significant improvement in the accuracy of 3D

positions over previous AR distance estimation work [115], as well as the ability

to annotate features that may not be directly visible from the user’s location,

such as the opposite side of a building. Automatic feature extraction from the

aerial photographs allows the system to intelligently recommend salient features

along the cast ray, so the user needs only to choose from the detected features

and possibly refine the result.

3.2.1 Annotation Interface

The intuition behind our use of aerial photographs to assist annotation is that

they can fill the role of the second point of view necessary for triangulating 3D

positions. Rather than having to walk to a different location and view the point

again to find its depth, the user can instead find the point on an aerial photo-

graph to provide the necessary information to calculate the distance to that point.

This also provides a unified way of making many different types of annotations

40

Chapter 3. Mobile AR

by marking up an aerial photograph – for example, specifying a corner, an edge

or a region all correspond to well-understood 2D drawing tasks on an aerial pho-

tograph. Conversely, an aerial photograph alone only allows annotations to be

made in 2D, whereas the combination of the aerial photograph with the first per-

son viewpoint allows the specification of 3D positions. The usefulness of aerial

photographs is also greatly increased when the user is situated in the environment

being annotated. For example, it may be difficult to distinguish features in an

aerial photograph alone, but when a user can stand in the scene and look at the

buildings from a ground-level viewpoint, these ambiguities can be more easily re-

solved. Having both the aerial photograph and the first person view is analogous

to having a perspective view and a top-down view in a CAD modeler – while

many actions can be executed in either view independently, having both views is

often faster and more powerful. The implementation of the manual annotation

interface was Jason Wither’s contribution in this work.

3.2.2 Feature Extraction

In addition to providing a useful viewpoint for users to manually annotate an

outdoor scene, aerial photographs also provide a great deal of information that

can be automatically segmented with appropriate image processing. The system

leverages this information by attempting to automatically detect which feature

41

Chapter 3. Mobile AR

the user is annotating. If the feature is detected correctly, the user only needs to

confirm it in the overhead view – otherwise, the same selection interface can be

used to correct any errors in the detected feature. Thus, the semiautomatic ap-

proach does not significantly add complexity to the interface, but does frequently

reduce the amount of input necessary, significantly reducing the burden on the

user.

Small errors in the tracking and the imperfectness the feature detection ne-

cessitate a certain amount of flexibility in the set of detected features returned.

To address orientation tracker error, an angular epsilon term is used to define a

search cone around the cast ray in which valid features may be found. For the

case that the best detected feature is not the intended feature, the best n features

are returned. The user can then easily scroll through the options in the order of

distance from the user with a click-and-drag motion.

Features are extracted using simple, ad-hoc filters that roughly segment out

desired feature types from aerial imagery. Algorithms are largely based on the

implementations available as part of the OpenCV image processing library [70].

Corner Extraction

A multiscale approach to corner detection provides results more robust to dis-

tractions for all sizes of corners a user may want to annotate, from large buildings

42

Chapter 3. Mobile AR

Figure 3.3: Outputs of each of the automatic feature detectors. Left to right,

top to bottom: (a) The Harris corner transform is applied at multiple scales and
summed together. (b) Corner features are selected from the local maxima of the
continuous function. (c) Coherent line segments extracted from the output of
Canny edge detection. (d) Edge features are selected from these line segments,
weighted by their gradient magnitude. (e) After segmenting uniform color regions,
components are merged and represented by their bounding boxes. (f) Region
features are selected from components by size, intersection and distance from the
center.

43

Chapter 3. Mobile AR

to smaller aerial features. Therefore, corner extraction uses the Harris corner

detector in the search region at multiple scales and sums the results to create a

likelihood for each pixel (see Figure 3.3a). Local maxima of the smooth corner

function are extracted by a sliding 5x5 window. Then, the region along the user’s

cast ray is searched for the maximum weight pixels (from the set of local maxima).

The weighting function is

w = ws ∗ wa ∗ wd (3.1)

where ws is the strength of the corner sampled from the corner image, wa is an

angular term, measuring the angular distance between the cast ray and corner

feature, and wd is a distance term, determined by the distance to the pixel, scaled

between 0 and 1. An example set of detected corner features can be seen in Figure

3.3b.

Edge Extraction

To extract edges, the Canny edge detector is first used, connected contours

are extracted and simplified using a simple polygonal approximation, and edges

shorter than a minimum threshold are discarded. Once the final set of edges

is determined (see Figure 3.3c), the weight of each edge is calculated and the

maximum weight edges are returned. The weighting function is

44

Chapter 3. Mobile AR

w = wi ∗ wo ∗ wd ∗ wg (3.2)

where wi is an intersection term, measuring how much the edge intersects the

cast ray, wo is an orientation term, weighting edges perpendicular to the cast ray

higher, wd is the same distance term as used for the corner detection, and wg is a

strength of the edge, determined by sampling the magnitude of the image gradient

at the edge’s midpoint, computed with a Sobel filter. An example of the detected

edges in a region can be seen in Figure 3.3d.

Region Extraction

Region features in aerial photographs tend to appear as regions of mostly uni-

form color surrounded by a boundary, so to find regions, the first step is to reduce

local texture by doing morphological closure and then use the Canny edge detector

to find region borders. To connect the boundaries, morphological closure is per-

formed on the edge image, followed by thinning to restore single-pixel wide edges.

The resulting image segments the aerial photograph into regions of similar color,

which are extracted using a flood fill algorithm. The output components are culled

based on HSV profile (vegetation areas are not the focus here), and then combined

by computing their percentage overlap and their color similarity, calculated as the

euclidean distance in CIE L*a*b* color space. The final list of components (see

45

Chapter 3. Mobile AR

Figure 3.3e) is then weighted and the maximum weight components are returned.

The weight function is

w = wi ∗ wa ∗ wp ∗ wd (3.3)

where wi is a binary intersection term, wa is an area weight term, wp is a perpen-

dicular term, calculated as the perpendicular distance between the center of the

region and the cast ray, as a percentage of the region’s diagonal length, and wd is

the same distance weight term as the corner and edge detectors. A typical set of

detected region features can be seen in Figure 3.3f.

3.2.3 Aerial Augmentation Results

Informal testing shows that the use of aerial photographs allows users to an-

notate scene features in 3D from a static viewpoint with much greater precision

than was previously possible [115]. The longitude and latitude accuracy of an

annotation position is limited only by the accuracy of the map and the ability

of the user to manipulate the position accurately. Google Maps provides data at

0.5m per pixel resolution for Santa Barbara [41], and user input is generally accu-

rate within a few pixels, so our final annotation precision is ±1.5m. Since height

information is computed from the ray cast by the user, its accuracy is dependent

on the quality of the orientation tracking.

46

Chapter 3. Mobile AR

While the accuracy of our approach is good, its greatest advantage is speed.

The ability to create an annotation with only a few simple interactions is sig-

nificantly faster than having to walk to different locations to create the same

annotation by triangulation.

The performance of the automatic feature extraction was informally tested in

an offline environment. For each type of annotation, 7 user positions were selected

from a large area aerial photograph, and for each location, multiple visible features

were targeted to annotate (57 corners, 34 edges and 31 regions). The detected

features were inspected, and if any were close enough to the intended feature

that manual correction would not be necessary, it was recorded as a success. The

results of these tests were that corner detection was successful approximately 65%

of the time, as was edge detection, while region detection had a success rate of

approximately 40%. Since the inclusion of feature extraction at worst only adds

an additional mouse-click to the user interface, even a low detection rate still

speeds up the overall use case, as bad results are trivially ignored, while good

results make further interaction unnecessary.

47

Chapter 3. Mobile AR

3.3 GroundCam

The prevailing solutions to the tracking problem in mobile AR work are to use

differential GPS if it is available locally [46], use regular GPS only and be limited

to low resolution (appropriate for applications such as navigation aides found

in cars), or to couple a global tracker such as GPS, which provides wide area,

absolute, low resolution data, with a local tracker such as an inertial navigation

system (integration of linear accelerometer and rotational gyroscope data), which

provides high resolution, relative and drift prone positioning [38, 33]. I present

the GroundCam (consisting of a camera and an orientation tracker - see Figure

3.4) as a new local tracking modality for wide-area applications. The low cost

(just a camera and a gyroscope unit) and ease of setup of the GroundCam make

it appropriate for the goal of Anywhere Augmentation.

While similar to inertial tracking, the GroundCam is a significant improvement

because it accumulates error much more slowly, maintaining similar small-scale

accuracy for a longer period of time. The accumulated error resulting in drift over

long runs makes the GroundCam unsuitable for a wide area tracking application

by itself. To address this issue, we use a complementary Kalman filter to combine

the GroundCam with a wide area GPS receiver (see Figure 3.4), providing better

accuracy over long term use in large, outdoor environments.

48

Chapter 3. Mobile AR

Figure 3.4: The modified ARagorn wearable setup for GroundCam tracking. We
use a Unibrain Fire-i 400 camera, an InterSense InertiaCube2 orientation tracker,
and a Garmin GPS 18 receiver.

3.3.1 Optical Flow-Based Tracking

The inspiration for the GroundCam is a desktop optical mouse. A camera is

pointed directly at the ground from just above waist height, and the video of the

ground moving in front of the camera can be used to determine how the camera

is moving in the plane of the ground. The result is a 2D position tracker.

Offline intrinsic camera calibration is done using Zhang’s procedure [118]. The

distortion coefficients from this process are used to correct the resulting artifacts

in the video frames by creating a corresponding undistortion image warp that is

49

Chapter 3. Mobile AR

applied to each frame – this allows us to use image distances as direct measure-

ments of distances in the scene.

Features are tracked frame to frame using the image pyramid-based optical

flow algorithm of Lucas and Kanade [62]. A hierarchy of images at different

resolutions are used to efficiently match texture features from one frame with the

most similar region in another frame. If the similarity between these two regions

is below a threshold, the feature is considered lost and is removed from the set.

Coherent motion must be extracted from the set of features successfully found

in consecutive frames, discarding the influence of outliers. We implemented the

RANSAC algorithm [34] to accomplish this task. Only one sample is necessary

to estimate the image’s 2D translation. Other samples are tested against this

estimate by separately thresholding the differences in magnitude and orientation.

Once the final set of inliers is found, the image motion estimate is computed by

taking the average of all the good samples. In the event that a consensus is not

reached, a fallback estimate is computed as the average of all the samples.

The computation to get world motion in real units from the image motion

in pixels is straightforward. The camera is assumed to be perpendicular to the

ground at some uniform height (measured offline). For a known height in meters

H, camera horizontal field of view F , and camera width in pixelsW , the conversion

factor from pixels to meters can be found with

50

Chapter 3. Mobile AR

2H

W
tan

(

F

2

)

(3.4)

In the ARagorn system, a 640x480 image from the camera with a field of view

of 12.2 degrees, mounted at 1.1m (just above waist high), yields a factor of 0.37mm

per pixel. See Figure 3.5.

The motion estimate is computed in the camera’s frame of reference. In or-

der to convert it to the world’s coordinate system, the absolute orientation of

the camera must be known. An InterSense InertiaCube2 orientation tracker is

used to obtain this information. A quick offline calibration is done to orient the

InertiaCube2’s output by obtaining angles for north, east, south and west. Dur-

ing operation, the detected angle is linearly interpolated between these computed

values to get the world stabilized camera orientation. The motion vector is then

transformed by this orientation to yield the final, world stabilized motion estimate.

3.3.2 GPS Coupling

Our complementary Kalman filter design is inspired by Foxlin’s work on ori-

entation tracker filtering [37]. The underlying concept is to filter the error signal

between two sensors, rather than filtering the actual position estimate. See Figure

3.6 for a diagram of the filter design.

51

Chapter 3. Mobile AR

HF

camera

user

Figure 3.5: Model of the camera setup. F is the camera’s horizontal field of
view, and H is the height of the CCD from the ground. It is assumed the camera
is oriented perpendicular to the ground.

The signal from the GroundCam is high frequency (30Hz), high resolution

(1mm), and includes small random errors (10mm) and large systematic errors

(drift is unbounded over time). The signal from a GPS receiver is low frequency

(1Hz), medium resolution (10cm), and includes medium random and systematic

errors (5m). We can model the error between the two signals as a smoothly

varying random process with a Kalman filter, and then use the filtered error

signal to correct the GroundCam signal on the fly, making the filtered output

available at the high frequency and high resolution.

52

Chapter 3. Mobile AR

GroundCam

GPS Kalman Filter

Camera

InertiaCube

-

+

+

-

pph δ+ p̂

lp ppl ˆ−

p̂δ

Figure 3.6: System diagram of the complementary Kalman filter. The difference
between the GPS signal and the current estimate is used by the Kalman filter to
create an error estimate. A camera and orientation tracker are combined in the
GroundCam, which outputs a position that includes some systematic error (drift).
The Kalman filter’s error estimate is subtracted from the GroundCam’s position
to create a new position estimate. While the Kalman filter is updated infrequently
(1Hz), a new position estimate is generated for each GroundCam update (30Hz).

Let ph be the high frequency signal from the GroundCam, and pl the low

frequency signal from a GPS receiver. p is the ground truth position, p̂ is the

estimated position, δp = p−ph and δp̂ is the estimated error signal. Since our filter

operates on 2D data, p is actually the vector [x, y]T . Within the Kalman filter,

there are 6 process dimensions and 2 measurement dimensions. Filter variable

names are standard as used in [113].

x =





















δp

δṗ

δp̈





















(3.5)

z =

[

δp

]

(3.6)

53

Chapter 3. Mobile AR

A =





















1 ∆t 1

2
∆t2

0 1 ∆t

0 0 1





















(3.7)

H =





















1

0

0





















(3.8)

B and u are both not used, and thus zero. Q and R are empirically determined

depending on the particular sensor being coupled with the GroundCam, and P is

initially set so measurements are preferred at startup.

The result of a complementary filter setup such as this is that for each new high

frequency update, only a prediction and then subtraction is necessary, making the

processor load very low for the frequent step. The correction step is computed

once per low frequency update.

3.3.3 Slip Compensation

The problem of RANSAC not reaching a consensus is analogous to the problem

of slipping wheels in odometry of wheeled vehicles, and results in estimated paths

that are much shorter than ground truth. Certain types of terrain are more prone

to this sort of error. Figure 3.7 shows examples of the ground textures that we

54

Chapter 3. Mobile AR

encountered in our trials. Low-contrast terrains like concrete, asphalt, and carpet

were much more prone to slipping than high-contrast terrains such as grass, gravel,

and wood.

We made a simple attempt to compensate for some of this error, which we call

slip compensation. The error is proportional to the rate at which RANSAC does

not produce a coherent estimate, or the slip rate. Based on the slip rate over a

short window of time, a successful coherent estimate is scaled to compensate for

the missed estimates (e.g., if the slip rate is s = 0.8, then a coherent estimate is

scaled by (1− s)−1 = 5.0). The results of applying this compensation can be seen

in Figure 3.8. While it does not correct for drift due to the integration of random

errors in the GroundCam signal, it does help achieve the appropriate scale, which

improves the quality of the filtered hybrid signal between GPS updates.

3.3.4 GroundCam Results

Figure 3.9 shows a typical run using the GroundCam and GPS hybrid tracking

system for approximately 90 seconds. The path walked includes avoiding obsta-

cles and going up and down steps, with wood, gravel and concrete terrain. As

expected, the GroundCam exhibits some drift, partially from random errors in

the motion estimate, but also from updates where a coherent estimate cannot be

generated. These errors cause different effects in the GroundCam path – random

55

Chapter 3. Mobile AR

Figure 3.7: Different types of terrain with example slip rates. Left to right, top

to bottom: asphalt (65%), concrete (80%), grass (20%), gravel (32%), wood (24%),
carpet (48%). Slip rates depend on speed, jitter, lighting and debris, in addition
to texture contrast.

56

Chapter 3. Mobile AR

Figure 3.8: A trial run of the GroundCam with and without slip compensation,
with hand-labeled ground truth. The trial was 72 seconds in duration over as-
phalt, and had a slip rate of 63%. Originally, the RMS error was 7.0m; with slip
compensation, the RMS error is 4.8m.

Figure 3.9: A trial run of the GroundCam coupled with GPS. The run was 90
seconds in duration, over wood, gravel and concrete terrain, and included avoiding
obstacles and going up and down stairs. The slip rate was 30%.

57

Chapter 3. Mobile AR

Figure 3.10: A trial run of the GroundCam coupled with GPS, with hand-labeled
ground truth. The run was 81 seconds long, over concrete and asphalt, along a
rectangle 18m long by 12m wide. The slip rate was 80% and RMS errors for the
GroundCam, GPS, and filtered signals are 5.5m, 1.9m, and 1.9m respectively.

errors make the path less smooth, while missing coherent estimates create a short-

ening effect. However, the coupling with the GPS signal eliminates the effect of

the GroundCam drift. Of particular importance is the much smoother quality of

the filtered signal than the raw GPS signal, from the high frequency, high res-

olution GroundCam data, which makes the hybrid tracker very appropriate for

mixed reality applications.

For comparison purposes, the run in Figure 3.10 includes a hand-labeled

ground truth – a rectangular path of approximately 18m x 12m over 81 seconds on

a residential street. The terrain is concrete and asphalt, which have lower contrast

58

Chapter 3. Mobile AR

Figure 3.11: The basic topology of the world model constructed by the world
building preliminary implementation, with the user’s field of view represented by
the yellow triangle. Discrete nodes are connected based on spatial and temporal
distance, and may not reflect the actual visibility of one position from another, as
around sharp corners.

textures and are more prone to noise in the error estimates. For this particular

trial, our GPS receiver experienced very little random noise, but did exhibit a

significant drift overall, due to our GPS unit not receiving a WAAS signal at our

location. While our filtered path stays close to the GPS signal, we cannot correct

for errors in the GPS position so any systematic GPS error is propagated into our

tracking result. In most US locations, the presence of a WAAS signal will improve

the quality of the GPS data, and subsequently improve the filtered data as well.

59

Chapter 3. Mobile AR

Figure 3.12: From the first person view, the user can see the aerial view in the
inset in the lower-left corner of the screen. The adjacent locations the user can
navigate to are indicated by blue arrows emanating from the bottom of the screen.

3.4 Remote Explorer

Creation of environment models for rendering and remote exploration is a com-

plex task that often requires a significant amount of effort. Recent approaches have

been developed to automate the procedure [107, 110], and large-scale acquisition

projects are underway. However, these techniques require custom hardware and

significant resources that are not available to most researchers, much less non-

experts. Therefore, an Anywhere Augmentation effort is desirable to bring easy

outdoor modeling within reach.

The concept behind this contribution is to enable a single, instrumented scout

user to explore a remote location and transmit data back to a base station, where

processing can be done to allow other users to explore the environment. Online

60

Chapter 3. Mobile AR

processing in the scout’s wearable can also allow for use of the acquired model

to enable applications such as realistic rendering of virtual geometry in these

environments.

The implemented system is a prototype that tackles the world building prob-

lem in a lower fidelity manner, focusing on the scout and base interface and data

acquisition. The main simplifying assumption is that the scout is an expert user

whose behavior can be expected to fit a certain pre-determined pattern. In par-

ticular, the scout moves between points of interest as desired, and then while

stationary, rotates 360 degrees to obtain a panoramic view of the environment at

that location.

Given this input, in the form of a position and orientation tracked video stream,

the preliminary implementation builds a very simple image-based world model,

styled after the mid-90s video game Myst [67]. In this style of world, the user can

view the surrounding environment from individual discrete locations by turning

around in place. Then, the user may select a new location visible from the current

one to jump to and view the scene from there. The world model that must be built

then stores the images associated with the surrounding view of the environment

at each of these discrete locations, plus a visibility graph that links locations to

one another.

61

Chapter 3. Mobile AR

To build the set of view images, individual frames from the tracked video

stream are stored to represent the view at regular angular increments. Then

when the user looks around their current location, the image closest to the tar-

get view direction is displayed. The visibility graph is built first by connecting

locations that are temporally adjacent, and then based on distance thresholding.

Unfortunately, this does not take into account the actual visibility between two

points, as positions around a corner from one another may be blocked by a build-

ing but will tend to be connected with this approach. Additional reasoning is

necessary based on the video stream.

This implementation was done in conjunction with Jason Wither, Ingrid Skei

and John Roberts. My contribution to the project is the world building component

that takes the tracked video stream as input and generates the world model,

exporting an API for a client application.

3.5 Panorama Building

To extend the fidelity of the remote explorer’s world model, I developed an

online environment map construction application called Envisor that allows a user

to capture a full surround view of a scene by panning a camera around. There are

many uses such easily acquired panoramas could fulfill. For example, within the

62

Chapter 3. Mobile AR

context of the remote explorer, they allow for a complete, compact representation

of the environment surrounding a single location. Even if not integrated into a

wearable computer, a home user may want to create full environment maps of

their home or office environments for sharing with friends or colleagues, or for

use in applications such as video conferencing or telepresence systems [45, 110]

as a simple way of representing a remote environment, e.g., as a backdrop in

a tele-collaboration system, or in low-bandwidth first-person interfaces such as

QuickTime VR models [83] or the game Myst [67]. Environment maps are also

an important component of realistic, real-time shading of geometry [94] – easy

acquisition of environment maps for new scenes enables visualization of virtual

geometry with the correct physical shading, as discussed in Section 2.2.

The environment map construction process is implemented as a series of com-

ponent algorithms. First, the camera’s 3DOF orientation is tracked using vision-

based tracking, both frame to frame updates and landmark features, which may

be fused with a gyroscope unit for increased robustness. The tracked video feed

is then projected into a cubemap, taking care to avoid projecting dynamic scene

elements to make sure the environment map only contains the static scene. Since

it may be difficult for the user to make sure to cover the entire scene on their own,

feedback is provided in the user interface to direct the user which directions need

further acquisition, and remaining gaps are filled with a texture diffusion tech-

63

Chapter 3. Mobile AR

nique. Finally, the resulting environment map is used to shade virtual geometry

placed in the physical environment.

3.5.1 Background

In general, acquisition of an environment map, or “light probe” is done by

carefully photographing a reflective sphere [26, 4] and reprojecting the image

into the appropriate format. Alternately, a camera with a fish-eye lens [50] or

an omnidirectional camera [110, 51, 68] can be used. Whichever technique is

used, the process is slow and detailed, requiring specialized hardware and offline

processing. Automatic acquisition of environment maps with just a camera is a

significant improvement in usability for the casual AR user.

High quality panorama construction has been extensively researched over the

last decade and a half. Panoramas can be and often are used as lightprobes for

many of the same applications as environment maps, such as remote presence

systems. For spherical panoramas (that cover 360◦ pan and 180◦ tilt), the equiv-

alence to environment maps is clear (simply different representations of the same

data), while cylindrical panoramas (360◦ pan, < 180◦ tilt) and partial panora-

mas (< 360◦ pan, < 180◦ tilt) are subsets of full environment maps. 1D and 2D

scanned image mosaics (where the camera is translated, not rotated) are distinct

and not explicitly discussed in this work.

64

Chapter 3. Mobile AR

Most of the early work in panorama and mosaic stitching focused on the task

of aligning two adjacent images through feature- or correlation-based algorithms

[18, 65, 44, 105]. Feature-based algorithms use sparse corresponding points in

each image, whereas correlation-based algorithms compute similarity based on all

overlapping pixels. Szeliski’s approach to acquire a cylindrical panorama [105] is

to warp each image according to a cylindrical projection model, where alignment

can be done via pure translation. Hansen et al. create scanned image mosaics by

computing affine transforms between successive images from a video sequence with

a hardware-implemented Laplacian pyramid technique for real-time operation [44].

McMillan and Bishop focus on computing the transform between images during

panning-only camera rotation for cylindrical panoramas [65]. The main limitation

of these local-alignment only approaches is that the accumulation of error over

multiple successive alignment computations will result in large errors when the

camera’s path revisits a previous pose, such as in closed-loop panoramas.

To address this problem, a global solution across the set of acquired images

being stitched together has been used in the past. Szeliski and Shum [106, 100]

proposed using a motion model that accounts for three rotational degrees of free-

dom, allowing arbitrary camera orientations. After computing local alignments

between each image pair, a global solution is computed that simultaneously mini-

mizes (using gradient descent) the error for corresponding feature pairs across all

65

Chapter 3. Mobile AR

overlapping images. Sawhney, Hsu and Kumar’s VideoBrush [49, 91, 92] solves

the same problem differently by alternating between computing pairwise image

alignments, then inferring the topology of the sequence (which images overlap

that are not temporally adjacent), and finally computing a global solution by si-

multaneously minimizing the alignment error across all topological neighbors. By

iterating through these steps multiple times, arbitrary camera orientation paths

can be stitched. Both of these approaches (Szeliski and Shum’s, and Sawhney,

Hsu and Kumar’s) are capable of high-quality, full spherical panoramas. However,

their solutions require all images to be available for stitching, and need multiple

iterations to compute global solutions over all images. These limitations hinder

the techniques’ application in real-time panorama stitching for online systems,

and suggest that scaling to large sets of images would be inefficient. Steedly et

al. [102] presents an optimization that accelerates the performance of stitching

video sequences into panoramas by only matching keyframes from within the video

sequence, using a global solution that takes O(n2) for n images (as opposed to

O(n3) for bundle adjustment). Aggregation of feature correspondences between

images further increases performance. Capel and Zisserman [16] present an alter-

native that is similar to my use of landmark features, that reuses image features

to compute consistent homographies across many images that may not be tempo-

rally adjacent. However, both these approach still requires all images available at

66

Chapter 3. Mobile AR

the beginning of stitching (requiring storage of the entire video sequence during

acquisition) and does not provide real-time performance.

A more unique way of creating mosaics is the manifold formulation presented

by Peleg et al. [76, 75, 89]. The difference in this formulation is to project the mo-

saic onto different manifolds other than just cylinders, spheres and planes, provid-

ing support for arbitrary camera motion (including translation) while maintaining

quality. However, while the results focus on camera translation, particularly in the

forward direction, only 1D panning rotation is discussed, potentially with some

static roll and tilt. Indeed, it is not clear how the proposed manifolds could be

adapted to support simultaneous panning and tilting.

MIT’s ongoing City Scanning project [22, 57, 107] aims to acquire geometry

and lightmap data for large urban environments. Towards this end, they have

constructed a robotic camera rig with a camera on a pan-tilt head that auto-

matically acquires images for spherical panorama stitching. Due to the large

number of images and global optimization formulation, the offline processing can

take hours. Other approaches utilizing unusual hardware include Nayar’s omni-

directional camera [68], the omnidirectional camera used by Uyttendaele et al.

[110], the proposed omnidirectional camera of Coleshill and Ferworn [20], and

Kim et al.’s [54] stereo camera setup. The concentric mosaic work by Shum et

67

Chapter 3. Mobile AR

al. [98, 97, 17, 99] also falls into this category, requiring an acquisition rig with

multiple cameras moving through concentric circular paths.

While most work in panorama stitching uses individual images as input, there

is also work on stitching frames from a video sequence [44, 120, 119, 105, 64, 92,

53, 102]. Mann and Picard [64] conducted some of the earliest work, using a novel

formulation of the alignment problem, but only demonstrate partial rotational

panoramas. Zhu et al.’s [119] original work focuses on videos that contain large 1D

translational motion, acquiring a panorama and depth information simultaneously.

Later, the same group presented results on 1D panning rotation to acquire full

cylindrical panoramas [120]. Kang and Shin [53] use a segmented video to create a

background panorama in their Tour into the Video project. The offline approach

registers images using a pair-wise least squares minimization of a rotation and

zoom model, but does not handle the accumulation of error over time and only

creates partial panoramas. Finally, the VideoBrush application from Sawhney et

al.’s work [92, 91] can create 2D scanned mosaics as well as spherical panoramas

from key frames selected out of a video sequence.

The most recent panorama work focused on automatic detection of panoramas.

Brown and Lowe [14] presented a method for identifying panoramas from sets of

images and automatically stitching them, up to full spherical panoramas. Along

a similar vein, Snavely et al.’s Photo Tourism project [101] registers arbitrary

68

Chapter 3. Mobile AR

images in a persistent 3D model, without explicitly creating panoramas. These

techniques are very powerful for processing sets of images, but that power comes

at the price of speed as their performance does not scale well to large sets / video

sequences.

A few systems have been developed that attempt to provide online feedback to

allow users to direct their panorama acquisition. The VideoBrush application [92]

computes a quick panorama approximation by doing only local refinement of a

simple 2D translation model. While this enables quick previews, the oversimplified

model creates very large distortions. The Panoramic Viewfinder [10] uses an

ultramobile PC to present a user interface for panorama acquisition that shows

the estimated panorama at that time. The system achieves 4Hz on a desktop PC,

so processes only individual images rather than video sequences, and once all the

images are acquired, the final panorama still requires offline global optimization.

Finally, there are many commercial products that do various forms of panorama

stitching. They can be roughly grouped based on a few features. Many of these

products support automatic stitching [84, 7, 1, 3, 112, 2, 109, 71, 5, 73, 77, 78, 103],

though often with the opportunity for user adjustment if necessary. A few prod-

ucts exist that can handle 180◦ fisheye images [103, 74, 112, 2], while others can

create full spherical panoramas from regular images [84, 7, 72, 112, 2, 24, 59, 74,

103]. In general, all the available products work by offline processing of a set or

69

Chapter 3. Mobile AR

sets of individual images acquired by a camera on a tripod. There are currently

no products that operate on video, or provide real-time feedback.

In the context of augmented reality, there is ample previous work on landmark

vision-based and hybrid tracking systems. The basic approach in general is to

use vision-based methods for landmark feature recognition, combined with gyro-

scopes for robustness. An earlier system that uses a silhouette of the horizon as a

stable landmark for vision only orientation tracking was presented by Behringer

[12]. More recently, Satoh et al. [90] presented an outdoor orientation tracking

system that uses user-specified patches of image texture as landmarks, fused with

a gyroscope. You and Neumann [117] demonstrated a position and orientation

tracker that uses offline acquired landmark features and a gyroscope in an Ex-

tended Kalman Filter framework. Most recently, Reitmayr and Drummond [86]

introduced a robust 6DOF outdoor hybrid tracking system that matches video

frames to a pre-acquired scene model. The limitation of each of these systems it

that they depend on offline measurement of the scene to be tracked before they

can be used. This requirement sets up a barrier to entry that hinders casual use

of these tracking solutions.

Most similar to Envisor is the work of Montiel and Davison in visual compass-

ing [66]. They extend previous work on single camera simultaneous localization

and mapping (SLAM) [25], using a complex Extended Kalman Filter formulation

70

Chapter 3. Mobile AR

of the tracking problem to compute orientation from dynamically acquired land-

mark features. This work is significantly different from the algorithm I present,

primarily in that my approach utilizes a more modular design, combining two

configurable tracking modalities to achieve similar tracking performance. Addi-

tionally, the use of RANSAC and a larger number of simple features per frame

suggests that Envisor will exhibit greater robustness to dynamic scene elements,

though a direct comparison is not available.

In conclusion, Envisor is a novel application for the online creation of envi-

ronment maps with a hand-held camera. The vision-based orientation tracking

is a novel formulation of frame to frame and landmark tracking techniques with

competitive performance characteristics to established approaches. The environ-

ment map construction differs significantly from existing panorama stitchers by

registering full video sequences into spherical panoramas, in linear time complex-

ity and constant space complexity, and without the need for post-processing or

user input.

3.5.2 Vision-based Tracking

Similar to the tracking done in the GroundCam, the vision-based tracking

for camera orientation uses the optical flow of a sparse set of features. Initial

features are found using Shi and Tomasi’s [95] good features operator, which

71

Chapter 3. Mobile AR

Figure 3.13: A video frame with the features overlaid. Green features have been
inliers for many frames, yellow have been inliers for a few frames, and red are
outliers. Features with circles around them are landmarks. The white lines show
each features’ recent history.

greedily selects a set of “corner” features, where corners are defined as image

patches with strong gradients in two directions. The motion of these features

between consecutive frames is determined using a pyramidal version of Lucas and

Kanade’s optical flow algorithm [62], which uses a hierarchy of different resolution

images to efficiently match sparse image patches between two frames. See Figure

3.13 for a visualization of these features. As features are lost (moved out of the

field of view, or could not be tracked), new features are added incrementally when

the number of features drops below a threshold.

One time offline camera calibration is done using Zhang’s algorithm [118],

which measures the camera’s focal length, center point, skew, and radial distor-

tion. The distortion parameters are used to correct the position of features in

72

Chapter 3. Mobile AR

the image, as well as to undistort each frame on the GPU creating an idealized

pinhole projection where the straightness of lines is maintained. The advantages

of this model are that an OpenGL camera can be made to match the real camera’s

properties, and that it makes it trivially easy to unproject 2D points on the image

plane into 3D points on the viewing sphere [35]. To do this unprojection, given a

2D point (x, y)T in normalized coordinates ([−1..1]),

(X ′, Y ′, Z ′)T = ((Cr − Cl)x, (Ct − Cb)y,−Cn)T (3.9)

(X,Y, Z)T =
(X ′, Y ′, Z ′)T

||(X ′, Y ′, Z ′)||
(3.10)

where C is the camera’s intrinsic parameters, as a frustum defined in the OpenGL

style (Cr, Cl, Ct, Cb, Cn are the right, left, top, bottom and near parameters

respectively).

Given a set of 2D image feature correspondences between two frames, there are

a variety of ways to recover camera rotation. The most straightforward is to state

the solution as an energy minimization problem. The function to be minimized

has three variables, the three degrees of freedom of the camera, and the error is

the distance between the updated points from the previous frame with the new

points from the current frame:

73

Chapter 3. Mobile AR

f(θ, φ, ψ) =
∑

i

||(x′i, y
′

i, z
′

i)
T −M(θ, φ, ψ)(xi, yi, zi)

T || (3.11)

where θ is yaw (rotation about the up or y axis), φ is pitch (rotation about the

right or x axis), and ψ is roll (rotation about the z axis, the negative of the viewing

direction in a right-handed coordinate system). (xi, yi, zi)
T is the i-th point in the

previous frame, and (x′i, y
′

i, z
′

i)
T is from the current frame. Finally, M(θ, φ, ψ) is

the 3x3 rotation matrix.

This error function can be minimized using a standard solver such as gradient

descent, using the previous frame’s solution as an initial guess. The downsides

to this approach are that it is iterative and may be distracted by nearby local

minima. Also, an Euler angle representation such as this necessitates specifying

a particular order of rotations, and can become confused around the singularity

points. This can be avoided by always minimizing the relative orientation, which

should always be close to zero, and then integrating these rotations.

Another standard approach is to construct a system of linear equations rep-

resenting the rotation applied to the points, then solving the system using a

technique like singular value decomposition. In this approach, since rotations are

not linear operations, the system must be constructed to solve for the 9 elements

of the 3x3 rotation matrix. The system of equations is setup as

74

Chapter 3. Mobile AR

x′i = M1,1xi +M1,2yi +M1,3zi (3.12)

y′i = M2,1xi +M2,2yi +M2,3zi (3.13)

z′i = M3,1xi +M3,2yi +M3,3zi (3.14)

Systems of hundreds of equations are created in standard cases. Once a solution

is acquired through SVD, an iterative minimizer is often used to refine the result

as a final step. Also, because the solution is generated for the elements of a 3x3

matrix, it is not actually guaranteed that the resulting matrix will be a valid

rotation matrix, as the column vectors are likely to not be orthogonal. Therefore,

explicit orthogonalization of the output matrix is required.

None of these techniques for computing orientation fit in with my goals for a

tracking framework. Easy integration within a RANSAC [34] implementation is

critical, as outliers are very likely in dynamic, real-world environments. There-

fore, Envisor employs a technique that can be quickly used to generate RANSAC

estimates and then used to refine the estimate from a large set of inliers, and it

needs to be fast to evaluate many times per frame. Horn’s formulation of the

absolute orientation problem [48] matches this requirement, and in addition does

not require further refinement or normalization. The algorithm takes two sets of

points and finds the optimal quaternion rotation that maps the first set to the

75

Chapter 3. Mobile AR

second, in a single step. It accomplishes this by finding the first eigenvector of

the following matrix,

M =
∑

i

Mi (3.15)

Mi =































ai bi ci di

ei fi gi hi

ii ji ki li

mi ni oi pi































(3.16)

ai = xix
′

i + yiy
′

i + ziz
′

i (3.17)

bi = ziy
′

i − yiz
′

i (3.18)

ci = xiz
′

i − zix
′

i (3.19)

di = yix
′

i − xiy
′

i (3.20)

ei = ziy
′

i − yiz
′

i (3.21)

fi = xix
′

i − yiy
′

i − ziz
′

i (3.22)

gi = xiy
′

i + yix
′

i (3.23)

hi = zix
′

i + xiz
′

i (3.24)

ii = xiz
′

i − zix
′

i (3.25)

76

Chapter 3. Mobile AR

ji = xiy
′

i + yix
′

i (3.26)

ki = yiy
′

i − ziz
′

i − xix
′

i (3.27)

li = yiz
′

i + ziy
′

i (3.28)

mi = yix
′

i − xiy
′

i (3.29)

ni = zix
′

i + xiz
′

i (3.30)

oi = yiz
′

i + ziy
′

i (3.31)

pi = ziz
′

i − xix
′

i − yiy
′

i (3.32)

The resulting eigenvector is the quaternion that optimally rotates the first set of

points into the second, which in the context of orientation tracking, is the delta

rotation between the two frames.

This technique has many attractive properties. First of all, the additional

contribution of each point is part of the sum of a 4x4 matrix, so for any number

of points the solution requires the same amount of work to compute, as compared

to the energy minimization or linear system approaches, which scale linearly with

the number of points. This also means it can be easily integrated into a RANSAC

implementation as both the estimation step on a small number of points and the

refinement step for a large set of points. Since this algorithm always yields the

optimal orientation, local minima are not a concern and a good initial guess is not

necessary. Finally, as the function returns a quaternion, order of rotations and

77

Chapter 3. Mobile AR

Figure 3.14: Two examples maps of landmarks distributed around the camera’s
position. Landmarks are blue circles, and the yellow or purple frustum represents
the camera’s current field of view. In the camera’s field of view, the current set
of tracked features can be seen in green, yellow and red.

singularities are not a concern and normalization, while generally unnecessary, is

a simple matter of dividing by the magnitude of the quaternion.

3.5.3 Landmark Features

Augmentation of the frame to frame tracking with landmark features is im-

portant to combat drift during long tracking runs. Drift is a problem because

the frame to frame tracking actually measures the camera’s angular velocity over

a short time, which is then integrated to get the orientation. This integration

accumulates small errors in each update, so over time the difference between the

actual orientation and the estimated orientation can become unbounded. Identify-

ing and reusing absolutely positioned landmark features can combat this problem

78

Chapter 3. Mobile AR

by providing a periodic direct measurement of absolute orientation, rather than

angular velocity.

Existing landmark based tracking systems [25] use some sort of uniquely iden-

tifiable feature such as large image patches, or SIFT [61] or SURF [11] features

for landmarks. These heavyweight features are used to recognize when the tracker

is revisiting previously seen regions, as well as during the frame to frame update

of currently visible features. This approach can be simplified, as the uniquely

identifiable nature of landmarks are not necessary for frame to frame updates –

since landmarks will agree with the motion of the rest of the scene, they will be

inliers in lightweight frame to frame tracking result discussed earlier. Therefore,

optical flow based tracking is sufficient for the feature update step, and the utility

of landmarks is only to uniquely identify features. Additionally, since a landmark

feature does not change from when it starts being tracked to when it leaves the

field of view, the landmark identification only needs to happen during feature

reinitialization.

The manner in which landmark tracking is integrated into the vision based

orientation tracking is as follows. Frame to frame updates are unchanged from

how they are described in the previous section. Features that are inliers for a

certain number of consecutive frames are promoted to landmarks if they are far

enough apart from pre-existing landmarks. A landmark feature is added to a set

79

Chapter 3. Mobile AR

of landmarks called the map (see Figure 3.14). Each landmark has its associated

world coordinate direction vector, and a feature descriptor. When a landmark is

created, the patch around it in the image is used to create a SURF feature, using

the code provided by Bay, Tuytelaars, and Gool [11]. The result is a 64 float

descriptor that can be used to uniquely identify that patch of image texture.

Once landmarks are in the map, they must be reacquired when they come

back into the camera’s field of view. If a landmark is expected to be in the

field of view (by projecting known landmark locations to the camera’s estimated

orientation), the landmark feature is searched for in a small search region about

its expected location. To do this, Shi and Tomasi’s good features operator is used

to find candidate points inside a small search region, and then SURF descriptors

are computed for each of those features. These descriptors are compared to the

landmark descriptor and if a match is found, the feature is linked to the landmark

and entered into the tracker. After a certain number of times attempting to

reacquire a landmark feature and failing, the landmark is determined to be lost and

is removed from the map. Matching descriptors are determined by normalizing the

two descriptors to have a magnitude of one and then computing the dot product,

which is thresholded.

During tracking, the landmark features are used twice, once as part of the full

set of frame to frame features, and separately to find an orientation estimate from

80

Chapter 3. Mobile AR

just the landmarks. This separate estimate uses the same algorithm as the frame

to frame tracking, but instead of computing the rotation between each landmark’s

position in the previous and current frame, the rotation from the landmark’s world

stabilized position to the current frame position is generated. RANSAC is still

applied, because while landmarks are assumed to be static features, they may still

change – for example, a landmark feature may be on a parked car, but after some

time the car may drive away and the landmark will have changed. Landmarks

that are outliers a certain number of times will eventually be discarded.

It is important to note that landmarks still drift in a certain sense, but the

implications are different than the drift from the frame to frame tracking. In

particular, new features are still initialized with a position relative to previously

acquired features, which means that new features will include any error from

the current position estimate in their positions. Over time, as new features are

created and then used for tracking to initialize more new features, this error

will accumulate and create a map that diverges from the real physical layout of

features. This is less of a problem for orientation tracking as the distance that can

be traveled before old features are reacquired is limited. Regardless, the difference

between this drift and the drift in frame to frame tracking is that the landmark

orientation estimate will always be the same when viewing a set of previously

81

Chapter 3. Mobile AR

acquired features, whereas the integrated frame to frame estimate may give very

different estimates each time an orientation is revisited.

3.5.4 Hybrid Tracking

For robust tracking, there are three tracking modalities that must be combined

– the frame to frame vision tracking, the landmark vision tracking, and a gyroscope

/ compass orientation tracker (the InertiaCube 2). The combination of these

trackers will retain their respective benefits and result in a higher quality final

tracked result. The landmark vision tracking provides an absolute orientation,

but is not available each frame as enough landmarks may not be visible, and may

exhibit some random error due to the smaller number of features used to compute

the orientation estimate. The frame to frame vision tracking provides an angular

velocity estimate with a low amount of error assuming slow camera motion, but

integration over time creates drift. Both vision based modalities depend on good

image data, which can be lost under fast motion (due to motion blur), significant

occlusion, or regions of no texture (e.g., the sky). The use of an InertiaCube 2

provides an additional absolute orientation measurement that is always available,

but exhibits significant systematic error due to the influence of ambient magnetic

fields.

82

Chapter 3. Mobile AR

Envisor uses a heuristic approach to combine these tracking inputs. In the case

that a landmark measurement is available, the current orientation is set to that

measurement. When insufficient landmark data is available, the frame to frame

relative measurement is added to the previous orientation. In the case that neither

is available, the relative rotation measured by the InertiaCube 2 is used in place of

the frame to frame measurement. To detect the case that the camera is completely

occluded or distracted by large dynamic motion, the vision update (landmarks or

frame to frame) is compared to the measurement of the InertiaCube 2. If the

difference between the two is above a threshold for multiple frames (adjusted to

account for the systematic errors in the InertiaCube 2 measurements), then the

vision update is determined to be bad and the InertiaCube 2’s update is used.

I also experimented with an implementation of an Extended Kalman Filter

[113] designed for orientation tracking, which uses the measurements from all sen-

sors as they are available and fuses them continuously. The EKF design was based

on the work presented by Azuma [8]. However, an EKF and other similar filters

are not particularly well-suited to Envisor’s environment map construction goal.

Errors in tracking cause visible discontinuities in registration of images in the final

environment map, and the particular formulation of an EKF ensures that errors

will be smoothed out over multiple frames, lengthening their effect and increasing

the span of their impact in the final output. Additionally, the significant error

83

Chapter 3. Mobile AR

Figure 3.15: A portion of the cubemap after the camera has been rotated to
complete a circle. The black lines near the left and right sides of the image mark
the edges of the cubemap face.

of the InertiaCube 2 will exert some influence in every frame, further increasing

registration discontinuities. Finally, the lag in the response of an EKF creates

visible errors every frame, as the EKF does not directly reflect the most recent

relative rotation measurement, which (under good tracking conditions) is the best

estimate of the relative alignment of two consecutive frames.

3.5.5 Cubemap Projection

Since creation of an environment map is the goal of this work, a blank cubemap

is the starting point. Image data from the tracked video stream is then projected

into this cubemap, creating an environment map. Accomplishing the projection is

a straightforward procedure. First, the cubemap is made renderable by attaching

each face to separate color attachment points of a framebuffer object (FBO). This

84

Chapter 3. Mobile AR

Figure 3.16: An example video frame with inlier (yellow and green) and outlier
(red) features marked, and the associated alpha mask used for projection. As fea-
tures are masked out until they have been inliers for multiple consecutive frames,
some of the yellow features are still masked out.

85

Chapter 3. Mobile AR

allows projection of the video data to happen by making the FBO the current

rendering context and drawing geometry texture mapped with the video image

into the cubemap face directly. It is necessary then to figure out where to draw

the geometry. As was mentioned earlier, because of the information gained from

the offline camera calibration, an OpenGL camera can be constructed that has

the same intrinsic parameters as the real camera. Given a camera intrinsic matrix

of





















fx 0 u0

0 fy v0

0 0 1





















(3.33)

(assuming zero skew) then the corresponding OpenGL projection matrix is (mod-

ified from Rehman [85])































2fx

w
0 2u0

w−1
0

0 2fy

h
2v0

h−1
0

0 0 f+n

f−n

−2fn

f−n

0 0 1 0































(3.34)

for a user-specified near and far plane (n and f respectively) and given image

width and height in pixels (w and h).

86

Chapter 3. Mobile AR

By orienting this camera with the estimated orientation, the portions of the

scene covered by the video image can easily be realized. Computing the directions

of the four corners of the camera’s field of view gives the coordinates of the quad

that needs to be drawn to project the video image into the cubemap, as a cubemap

is indexed by direction vectors. Therefore, the four corners are tested to see which

cubemap faces they fall on, and then each face that is affected is attached to the

OpenGL context (via the FBO) and a quad is drawn with the corner coordinates

equal to the computed world direction vectors (see Figure 3.15).

To reduce edge artifacts and allow regions of the image to be selectively pro-

jected, an alpha mask texture is applied to the quad being drawn into the cubemap

as well (see Figure 3.16). Initially the mask is set entirely to black, and the bor-

ders are faded to white at the very edges. When rendering, blending is turned

on with a blend equation that makes black mask pixels opaque and white pixels

transparent.

The mask is further used to selectively project only portions of the video image

that are determined to be static background as opposed to dynamic foreground

objects (e.g., people, cars, etc.). This determination is made based on the features

from the frame to frame tracking. Because of the way features are added to the

scene, any portion of the image that is tracked by features has significant texture.

If a feature is an outlier, then it is tracking some scene element that is moving

87

Chapter 3. Mobile AR

contrary to the camera motion, and is labeled as a dynamic object which should

not be projected. Inlier features move with the camera and so are labeled as static

elements of the scene which are projected. Even though regions of the image with

uniform texture will not have features tracking them, they should be projected as

well. It is better to be slightly conservative about classification, as if a portion of

the image is erroneously determined to be dynamic, it likely will not be for long

and can be filled in shortly thereafter.

To remove dynamic regions from the projected image, the mask is modified

by drawing a Gaussian splats for each outlier feature. These splats are blended

together, so in regions with lots of outliers, the entire region is masked out. Then

when the video image is drawn into the cubemap, these regions will be left out.

3.5.6 Gap Avoidance and Filling

Creating full environment maps means dealing with gaps and there are two

components to effectively do so. First is to enable the user to avoid gaps in the

environment acquisition process, and the second is to fill in the gaps that remain.

Gap Avoidance

Enabling user avoidance of gaps means giving the user useful feedback during

the acquisition process that allows him or her to more intelligently direct the

88

Chapter 3. Mobile AR

Figure 3.17: On-screen feedback in the form of arrows around the video image
direct the user’s acquisition. Left to right: (a) Before panning the camera, all
directions need to be acquired still. (b) After the camera has completed a circular
path, the left and right arrows are gone.

camera. In a wearable context, a user interface that simply presents the user

with the cubemap and allows panning around the view is too complex, requiring

significant cognitive load and manipulation of the wearable input device. Instead,

the feedback should be more tailored to low cognitive load with no interaction

requirement. Envisor presents a passive display of a set of arrows around the

current view that indicate which directions gaps are present along. See Figure

3.17 for an example image. As there are fewer unfilled pixels along a certain

direction, that arrow will become more transparent until it disappears when all

the gaps are filled.

Creating these arrows requires efficiently sampling the pixels along each direc-

tion and testing for gaps (to make this determination easy, projected pixels have

alpha values of 0, while gap pixels are greater than 0) To sample the cubemap

89

Chapter 3. Mobile AR

view

right

s0

s1

s2

s3

s5

s6

s7

s4

Figure 3.18: Gap searching proceeds by rotating the view vector around each of
8 evenly-spaced vectors perpendicular to the view direction. Here, the view vector
is rotated about the right vector. Along each sample vector si, the cubemap is
sampled to see if there is a gap.

along each direction, from the camera’s extrinsic pose the camera’s view, right and

up vectors (d, r and u respectively) can be extracted. The right and up vectors

can be used to create 8 cardinal directions around the viewing direction. Then

for each of these axes, the view vector is rotated about the axis incrementally in

the range of [0..180] degrees (see Figure 3.18).

For the set of direction vectors about the view vector, D,

90

Chapter 3. Mobile AR

D =





































































−u

r − u

r

r + u

u

u− r

−r

−r − u





































































(3.35)

Si is the set of sample vectors for each direction Di ∈ D,

Si = {sj
i : sj

i = MR(j,Di)d, j ∈ [0..180]} (3.36)

where MR(θ,~v) is the rotation matrix corresponding to a rotation of θ degrees

about the vector ~v.

For each direction i, to determine the prevalence of gaps along that direction,

the cubemap is sampled at each sample vector in Si, and the average of these

samples is taken,

wi =
1

n

∑

j

gap(sj
i) (3.37)

91

Chapter 3. Mobile AR

where each gap is a function that samples the cubemap at the direction and

returns 1 if it is a gap and 0 if it is filled.

An straightforward way to implement this would be to read back the pixels

from the cubemap along the sample vector directions, but this pixel readback

is extremely slow as it breaks GPU pipelining by introducing a stall. Since the

panorama construction has heavy CPU and GPU use, good pipelining is critical for

performance, so keeping the computation on the GPU is important. To accomplish

this, the cubemap is sampled by drawing a point with the sample vector as its

texture coordinate. The series of samples are combined by blending with an

additive blend function, and a simple fragment shader is used to test the sampled

values to see if they are gaps or not and output 1 or 0 appropriately. The result is 8

pixels in an offscreen buffer, each with an alpha value that represents the weight for

the corresponding direction. When drawing the arrows in the user interface, the

geometry simply has this texture applied with the appropriate pixel’s coordinate

passed as the texture coordinates for the entire arrow.

Gap Filling

Even with user feedback, gaps are still likely to occur, though they may be

smaller. It is important to do something to fill these gaps, as they create a very

distraction visual artifact (the appearance of obvious “holes” in the environment

92

Chapter 3. Mobile AR

Figure 3.19: Examples of the texture diffusion for incomplete environment maps.
The black lines show the edges of the cubemap faces.

map and shaded geometry). There are a number of established image inpaint-

ing algorithms [13, 23] that are suited to this task. However, most are offline

algorithms that require extensive computation and often take seconds to minutes

per image, depending on the size of the gaps. That sort of performance is not

acceptable in an online solution like this. The fast image inpainting algorithm

of Oliveira et al. [69] is better, but it still requires user input to place diffusion

boundaries. The technique can be adapted to be fully automatic however, with

just the diffusion component and no boundaries. The advantages of this approach

are numerous. First, it can easily be implemented on the GPU, which is inline

with the goal of avoiding readback of GPU data to the CPU. Second, it is an

incremental algorithm, so a little work can be done each frame without impacting

the overall performance. And finally, with some modifications it can be made

to handle well the case that some gap filling is done and then some of the gap

93

Chapter 3. Mobile AR

Figure 3.20: Layout of the cubemap faces in the atlas texture. The black outline
marks where the cubemap faces are sampled from when applying the texture
diffusion.

pixels are filled in from projected video images. As this will happen often, it is

important for the gap filling to be able to respond to the new data immediately.

The basic approach is to use a fragment shader that implements a diffusion

function. Pseudocode for the shader is as follows:

center = sample texture at center of kernel

avg = 0

count = 0

dist = MAX

for each pixel in kernel

{

samp = sample texture at kernel pixel

dist = min(dist, samp.a)

if(samp.a <= center.a)

{

avg += samp

count += 1

94

Chapter 3. Mobile AR

}

}

avg /= count;

avg.a = dist + 1

if(count == 0 || center.a < avg.a)

output = center

else

output = avg

This shader operates in the following way. First, all pixels in the cubemap

are initialized with an alpha value of 1, while projected pixels are set to have an

alpha value of 0. During diffusion, the alpha value is used to encode the distance

from a filled pixel – pixels with alpha 0 are filled, pixels with alpha 1 have not

been diffused into yet, and alpha values in between designate the distance that

pixel is from the nearest filled pixel. The shader computes an RGB value that is

the average of all the surrounding pixels that have a distance less than or equal to

the distance of the center pixel. It also finds the minimum distance to the center

pixel. The new output value is then the average RGB and the minimum distance

plus one for the alpha value.

One advantage of this implementation is that it does not repeatedly recompute

pixels that have already been diffused, which would result in their colors slowly

fading due to rounding errors. Also, by using the distance as part of the criteria

for deciding to update a pixel, when new regions of the image are filled, the new

smaller distances of nearby pixels will insure they get updated. The result of this

95

Chapter 3. Mobile AR

sort of propagation is the generation of a rough Voronoi-style diagram, except

that the colors from the regions are extensively blurred together. See Figure 3.19

for examples.

The remaining difficulty is to implement the diffusion on a cubemap, with

correct diffusion between cubemap faces. The solution is to do the diffusion in

a regular 2D texture that has been filled in with the cubemap faces laid out so

the boundaries of the embedded faces meet as they do on the actual cube. The

particular layout used is from Gu [43], which can be seen in Figure 3.20. Before a

diffusion step is computed, the cubemap is drawn into the atlas texture as shown.

Then the diffusion is computed by drawing each face back into the cubemap with

the diffusion shader enabled, sampling from the atlas texture. This way, pixels at

the boundary of one face will correctly sample from the abutting faces as needed.

To improve performance, the texture diffusion is actually computed on a sub-

sampled cubemap with faces sized 64x64 pixels (while the full resolution cubemap

is 512x512 or greater). As the diffused texture is very low frequency, this does not

impact the visual quality.

3.5.7 Application to Visualization

The final step of this technique is to use the acquired environment maps to

render virtual geometry as if it were illuminated by the surrounding physical scene.

96

Chapter 3. Mobile AR

This is accomplished with the same basic technique as outlined in Section 2.2.1. A

directly applied environment map simulates the response of a completely specular

material. To simulate the response of a diffuse material, the environment map is

blurred, so each pixel is the averaged contribution of many pixels in the original

environment map. Different from the description in Section 2.2.1 is the fact that

a cubemap texture is being applied in this case, as opposed to a 2D texture that

contains a spheremap. A cubemap texture also supports mipmap generation in

OpenGL, but the algorithm does not blur across the cubemap faces, so the result

of a heavily blurred environment map is a cube with each face a different color.

To compute a correct cubemap blurring effect, the texture atlas approach de-

scribed in Section 3.5.5 is used again. The cubemap is drawn into the texture

atlas, and then a 2-pass blur shader is applied. The blur shader works by com-

puting a 1D blur in each pass, first horizontal and then vertical, resulting in a

2D triangle blur. The advantage of this approach is that the number of texture

samples needed for an N × N filter is 2N instead of N2. A 1D blur shader is

very simple – it samples the texture multiple times along one axis and averages

the result. To further reduce the number of texture samples needed, each sample

is made on the boundary between two texels and the hardware’s texture filtering

is turned on, thereby returning the average of two pixels with one sample. This

way, a 15 × 15 filter is implemented very efficiently, with only 7 samples. These

97

Chapter 3. Mobile AR

Figure 3.21: Virtual geometry shaded using the acquired environment map from
Figure 3.25(a). The environment map is filtered first to create the appearance of a
silver material with a glossy finish. The teapot is superimposed over the acquired
environment map.

two passes are applied to the atlas, which is then put back into a cubemap for

application as a reflectance map.

To adjust the appearance of the virtual geometry, the OpenGL diffuse color

response is used to modulate the intensity and hue of the applied reflectance map.

Different levels of shininess are created by adjusting the amount of blur applied

to the environment map. An example of a glossy virtual object being rendered

inside the scene acquired in Figure 3.25(a) can be seen in Figure 3.21.

3.5.8 Panorama Building Results

See Figure 3.25(a) for an example of an environment map constructed by

Envisor from a camera on a tripod. While a few misregistrations are evident,

98

Chapter 3. Mobile AR

particularly in regions that are close to the camera, they are minor. Since the

camera was on a tripod, it was unable to acquire the scene directly above or

below its position, so the texture diffusion process has filled in those gaps.

Performance

This work was tested on three machines: a desktop with a 2.1GHz AMD Athlon

CPU and an NVIDIA GeForce FX 6200 graphics card, another desktop with a

3.0GHz Intel Xeon and an NVIDIA GeForce 7800 GS, and a laptop with a 2.0GHz

Intel Pentium M CPU and an NVIDIA GeForce Go 6600. The camera used was

a Unibrain Fire-i400 camera with a 4mm lens. In general, we experience around

15 frames per second in the testing application, which, for testing convenience,

runs off of a pre-recorded MPEG encoded video and accompanying metadata file.

See Table 3.1 for more detailed timing data. The GPU implemented steps of

the technique are not accurately represented in the timing data because of the

difficulty in accurately measuring the stages separately given the GPU’s heavy

pipelining. Because of the way the GPU stages are implemented however, they

are able to completely overlap the CPU portions of the algorithm, and so do not

impact the final per-frame running time. This was confirmed by comparing timing

data with and without the GPU components of the application, which were not

significantly different.

99

Chapter 3. Mobile AR

stage Athlon Xeon Pentium

video decoding 13.0 8.5 11.2
undistortion 0.3 0.3 0.3

preprocessing total 13.3 8.8 11.5
KLT tracking 24.5 15.7 28.6
RANSAC 0.3 0.5 0.7
landmarks 40.1 33.9 24.5

tracking total 65.2 50.5 54.2
cubemap update 2.7 2.3 3.7
total 81.2 61.6 69.5

Table 3.1: Average times (in ms) of the various stages of Envisor, on three
computers. The preprocessing and tracking are broken up into their component
stages, and timings are presented for each stage as well as the frame total. The
final total is the start to finish for each frame of the test application.

Unfortunately, some of the steps that take the most time are fixed costs. When

SURF features are used for landmarks, there is a step to compute the integral im-

age of the video frame. This expensive operation is performed even if only one

SURF descriptor is needed. However, better performance can be achieved by not

doing every step of the algorithm every frame. For example, only looking for new

landmarks every 3 frames yields a large improvement to the average framerate.

Similarly, one of the slowest components of the KLT tracking is initialization of

new features, which can also be done every few frames. By distributing periodic

workloads across frames (e.g., interleaving KLT feature initialization and land-

mark searching) the performance can be increased. How aggressively this can be

done depends on the expected speed of camera motion and dynamic nature of the

scene. For faster camera motion, features will be in the field of view for fewer

100

Chapter 3. Mobile AR

frames, and so all tracking operations must happen frequently. More dynamic

scenes will need better robustness to outliers, which requires more features pro-

cessed more frequently. These considerations are important on a per-application

basis.

The ability to tune the performance of the frame to frame and landmark feature

tracking separately is an additional advantage of the approach to tracking used in

this work. The level of configurability to particular application needs is very high

– for example, in a scene with consistent strong texture and very few dynamic

elements, landmark tracking updates by themselves may be sufficient, without

relying on frame to frame measurements to fill gaps. Alternately, applications

such as fully immersive VR or games that only need angular velocity input could

use only the frame to frame updates without the landmark corrections. This

advantage is in contrast to black box tracking solutions that only rely on one

tracking modality.

Tracking

For testing purposes, we used a selection of different cameras: a Unibrain

Fire-i, a Unibrain Fire-i400, and a Point Grey FireFlyMV. They cover a range

from consumer level to mid-range lab cameras. Mostly, we used the Fire-i400

because it has the widest field of view, at 51◦. A wider field of view means the

101

Chapter 3. Mobile AR

-10 -5 0 5 10
Yaw (degrees)

-5

-2.5

0

2.5

5

Pi
tc

h
(d

eg
re

es
)

-10 -5 0 5 10

-5

0

5

Figure 3.22: Accuracy of the frame to frame tracking. After rotating the camera
in a full circle on a tripod, the estimated orientation from the integration of the
relative rotation measurements has error less than 0.2◦.

feature tracking is less likely to get distracted by large occluders such as a person

walking by, and that potentially faster motion can be tracked. It also improves

the robustness of the tracking against regions of uniform texture, as such regions

will have to be much larger to fill the camera’s field of view. However, the most

significant impact of the wider field of view was that it made environment map

construction much faster as fewer sweeps around the scene were needed, which

definitely improved the usability of Envisor.

The accuracy of the tracking was tested by moving the camera through a

circular sweep at roughly 20◦ per second, on a tripod in a large room under

favorable tracking conditions. Figure 3.22 shows what the estimated orientation of

the camera was at the start and end of the sweep. The tracking is accurate enough

that after completing the loop, the camera is off the original orientation by 0.2◦.

102

Chapter 3. Mobile AR

This is significant, as it means that the characteristic discontinuity at the end of

a closed-loop in panorama stitching, which generally requires a global refinement

to the stitching, is not as important for Envisor. This accuracy is also sufficient

for the landmarks from the beginning of the sweep to be reclaimed as they come

back into view, as shown in Figure 3.23. This means that as long as good tracking

conditions are maintained, Envisor is capable of long-term drift-free orientation

tracking. However, because the landmark features are originally initialized off

the frame to frame tracking results, if the relative orientation gets distracted the

landmarks will incorporate that error into their positions. If this error is too large,

the reacquisition of old landmark features will fail, causing them to be discarded

and new landmarks acquired in their place. Because of these limitations, the

vision based tracking alone is not robust to poor tracking conditions such as

total occlusion. Under good conditions, the tracking is successful indefinitely (see

Figure 3.24).

Theoretically, the maximum rate of rotation that can be tracked is limited by

the camera’s field of view and the framerate. For our testing setup, we used a 51◦

field of view camera and had a framerate of 10Hz. If half the image needs to remain

in the field of view between consecutive frames for tracking to succeed, then that

results in a theoretical maximum angular velocity of 255◦ per second. Realistically,

motion blur causes optical flow to fail at much lower speeds. In practice, we find

103

Chapter 3. Mobile AR

Figure 3.23: The tracking accuracy is sufficient to close circular paths without
the characteristic discontinuity. Here, a circular sweep is coming to an end, and
the landmarks put in the map at the start are successfully being reinitialized as
they come back into the field of view (indicated by the darker, heavier circles).

that angular velocities of up to 60◦ per second can be tracked by the frame to

frame tracking, while landmark tracking is successful at angular velocities of up

to 30◦ per second. The reasons for the slower maximum for landmark tracking

are that the landmarks require features to be tracked successfully for a number of

consecutive frames before they can be promoted to landmark status, and that the

blurring decreases the quality of the computed SURF descriptor, which interferes

with reinitialization. The most effective way to increase the maximum trackable

angular velocity is to lower the camera’s exposure time, reducing the motion blur

effect. High speed cameras and brightly illuminated scenes will both improve this

result.

104

Chapter 3. Mobile AR

As Envisor is solely an orientation tracker, it makes the implicit assumption

that the camera experiences no translation – i.e., that it rotates about the cam-

era’s optical center. For a head-worn or hand-held camera, this assumption will

not be exactly correct. The impact of small translations on the quality of the

tracking depends on the distance to the objects being tracked. For an indoor en-

vironment such as a lab or office with objects within 5 to 10 feet of the camera, the

small translations from a hand-held camera will cause visible discontinuities when

closing circle sweeps. Locally the resulting environment map appears smooth,

but global errors become a problem (see Figure 3.25(c)). For this reason, our

indoor tests use a tripod – unfortunately, high quality indoor environment map

construction either requires a tripod or a tracking model that takes translation

into account. Outdoors, where objects are often 20 feet or more away, the trans-

lations from hand-held camera motion have a much smaller impact (see Figure

3.26).

Environment Mapping

The quality of the resulting environment map from Envisor depends heavily

on the quality of the tracking data obtained. People are very sensitive to small

registration errors when tracking results can be compared directly, side-by-side,

as they are in an environment map at the borders between projected frames.

105

Chapter 3. Mobile AR

Figure 3.24: Snapshots of the feature tracking for hand-held camera motion over
five minutes. Left to right, top to bottom: (a) Initial feature set. (b,c,d,e) Tracking
maintained through various speeds and orientations, with landmark reacquisition.
(f) The resulting partial environment map shows the quality of the tracking.

Visible gaps and jumps negatively affect the appearance of a panorama. While

the tracking presented here is able to rely on a variety of different modalities,

only the frame to frame relative updates create seamless blending within the

environment map, as they directly compute the optimal transform between two

frames. If there are errors in the tracking from bad video data or random noise in

the landmark orientation measurement, discontinuities in the environment map

will arise. However, depending on the target application, these discontinuities

may not be a problem. For example, applications that use environment maps as

a backdrop may find small errors acceptable. Shading of virtual geometry that is

106

Chapter 3. Mobile AR

Figure 3.25: Cylindrical projections of acquired environment maps. Top to

bottom: (a) Using a tripod. (b) With automatic exposure and white balance
enabled, creating visible discontinuities due to intensity and hue differences. (c)
Carefully constructed with a hand-held camera in approximately 3 minutes. Small
translations result in errors.

107

Chapter 3. Mobile AR

Figure 3.26: A panorama constructed outdoors with a hand-held camera.

not completely specular and smooth will also not be adversely affected by these

errors.

One of the problems facing environment map construction is the changing

exposure and white balance of automatically adjusting cameras. As a camera

moves from a bright region to a darker one, or vice-versa, it takes some amount

of time to adjust to the new illumination, which means that revisiting the same

portion of a scene may result in different pixel values than were previously ac-

quired. This problem is evident when the camera is re-swept over a region, and

the border between the old and new data is clearly visible due to brightness and

hue differences (see Figure 3.25(b)). In low dynamic range environments, such

as an office with fluorescent lighting that creates significant ambient illumination,

the camera’s automatic adjustment can be turned off with no adverse effects (see

Figure 3.25(a)). However, in high dynamic range environments such as outdoors

or indoors with very localized light sources, the automatic exposure adjustment

108

Chapter 3. Mobile AR

is important for tracking because it ensures that the image features always have

good contrast. Over or under exposure will reduce the quality of the computed op-

tical flow, hurting tracking performance. Alternately, if a camera supports reading

the adjusted parameters per-frame, a color model can be fit to these parameters

that would allow manual normalization of the images on the CPU or GPU, so the

tracking can always have an optimal exposure image, while the environment map

always has normalized intensities. Unfortunately, our cameras do not support this

feature.

The quality of the masking of dynamic portions of the scene in the environ-

ment map warrants examination as well. The assumption made is that dynamic

objects will be tracked by outlier features which are then used to create the mask.

However, the number of features definitely impacts the quality of this masking. If

there are too few features being tracked, moving elements may only have one or

two features on them, or possibly none at all. Also, a fast moving object will have

more motion blur than the rest of the scene, and therefore will be less likely to be

selected for new feature points. The result is that dynamic objects (or portions

thereof) will still occasionally end up in the final environment map. Increasing

the number of tracked features will reduce this effect, while a more robust solution

would be to use a dense optical flow algorithm that could classify each pixel as

inlier or outlier.

109

Chapter 3. Mobile AR

3.5.9 Error Analysis

It is important to examine the sources of error and failure modes of the ori-

entation tracking. There are five ways error can be introduced: translation of

the camera (violation of the rotation-only assumption), image noise (affecting the

feature tracking), motion blur (also affecting feature tracking), lack of texture

(causing poorly distributed features), and significant distractions (overwhelming

RANSAC classification). Extremes of each of these conditions can cause tracking

to completely fail due to error – too much translation and orientation estimate

will diverge from real orientation, too much noise or motion blur and the feature

tracking will produce random data, too little texture and there will be no features

to track, too many / large distractions and the coherent estimate will not reflect

the camera motion. How each source will degrade performance is worth examining

more closely.

Translation

It is possible to approximate what the measured rotation will be for a transla-

tion of the camera. Let p be a 3D point at the center of the camera image plane

at distance n from the camera, corresponding to a 3D point P that is distance

D from the camera. If the camera undergoes a translation of distance T , per-

pendicular to the viewing direction, then the point P will appear to move T in

110

Chapter 3. Mobile AR

Q P

pq

T

n

D

Q P

pq

θ

Figure 3.27: Comparison of camera translation and rotation on scene features.
Left to right: (a) As the camera undergoes translation T , point P in the scene
moves the same distance. The corresponding projected points p and q show the
motion of the feature in the image. (b) Point q can also be generated by rotating
the camera through angle θ.

the opposite direction (in camera coordinates), becoming Q, with corresponding

image plane point q. See Figure 3.27 for an illustration. The distance the point

in the image plane will have appeared to move is

pq =
nT

D
(3.38)

d
θ

T

pivot

Figure 3.28: Induced translation from rotation of the camera about a pivot point
that is offset from the optical center.

111

Chapter 3. Mobile AR

If the camera had instead rotated by θ degrees about an axis perpendicular to the

viewing direction, the distance between p and q would instead be

pq = n tan θ (3.39)

Therefore, for a translation T , the apparent rotation θ can be computed as

θ = tan−1
T

D
(3.40)

While this only computes the apparent rotation of a point at the center of the

image, it is a reasonable approximation of the resulting measured rotation for the

entire image. The motion of features elsewhere in the image will be symmetric

about the center in orientation, but the further points are from the center, the

smaller their apparent rotation will be. Therefore, this approximation will slightly

over-estimate the actual measurement under translation.

Pure translation is unlikely, however. More likely is that the camera will rotate

about a point that is not the optical center, which will cause both rotation and

translation simultaneously. Assume the pivot about which the camera rotates is

distance d in front of the camera’s optical center (negative values of d mean the

pivot is behind the optical center). Then for a rotation of θ, the translation of the

camera T will be

112

Chapter 3. Mobile AR

T = 2d sin
θ

2
(3.41)

For an illustration, see Figure 3.28. This translation T will cause an additional

rotation measurement of δθ,

δθ = tan−1
2d sin θ

2

D
(3.42)

Thus, the total measured rotation θm will be

θm = θ + δθ (3.43)

θm = θ + tan−1
2d sin θ

2

D
(3.44)

(3.45)

This equation is important as it lets us predict the error due to translation of

rotation of the camera about a point other than the optical center. For small

values of θ, sin θ ≈ 1 and for small values of x, tan−1 x ≈ x. Therefore, for small

rotations,

δθ ≈
2d

D
(3.46)

θm ≈ θ +
2d

D
(3.47)

113

Chapter 3. Mobile AR

The significance of this approximation is that the error is only based on the ratio

between the distance to the 3D feature point and the distance between the optical

center and the pivot point. Therefore, smaller scenes can be effectively tracked

only when the pivot point is closer to the optical center than is necessary to achieve

similar tracking quality in large scenes. Also apparent from the equation is that

if the optical center is in front of the pivot point, the measured rotation will be

larger than the actual rotation, and if it is behind, the measured rotation will be

smaller.

Tests with synthetic data were used to measure this effect directly, by rotating

an off-center virtual camera inside a synthetic scene through a 360◦ circle. The

synthetic scene consists of features regularly spaced on a 10m sphere every 5◦ in

pan and tilt, resulting in 2592 distinct features. The camera’s offset was varied

from 5mm to 5m, for both positive and negative offsets, and the camera underwent

360 1◦ rotations for each offset. Results can be seen in Figure 3.29, which roughly

agrees with the predicted model.

The results show that for a ratio of pivot offset to scene distance of 0.1, after

a full circle at 1◦ increments, the error will be approximately 36◦. However, for

tripod or hand-held camera rotation, a pivot offset of 20cm or less is reasonable,

in which case, the error is very small per frame, on the order of 0.002◦ in a 10m

scene. After a full circle, the accumulated error in this case is expected to be on

114

Chapter 3. Mobile AR

1 10 100 1000 10000
Pivot Offset (mm)

0

0.2

0.4

0.6

0.8

1

E
rr

or
 (

de
gr

ee
s)

Positive
Negative

Figure 3.29: Error in rotation measurements in synthetic test of off-center rota-
tion. Error is the average over 360 1◦ rotations.

the order of a few tenths of a degree. In real world scenarios, indoor scenes tend to

range between 2m and 10m from the camera, versus outdoor scenes which range

between 5m and 100m. A pivot offset of approximately 20cm (for a hand-held

camera) results in a per-degree error range of 0.002◦ to 0.01◦ indoors, or 0.0002◦ to

0.004◦ outdoors. After a 360 degree panning rotation, the expected error indoors

is on the order of 1◦, versus 0.1◦ degrees outdoors. A camera on a tripod can

expect a much smaller pivot offset of 5cm or less, which results in an expected

total error of the order of 0.1◦ indoors or 0.01◦ outdoors.

To further confirm these results, controlled scenes were created with the camera

pivoting about different points to get direct measurements with the actual Envisor

software. In these tests, the camera was set on a tripod, surrounded by real objects

(walls and chairs) a particular distance away. The camera was then slowly rotated

115

Chapter 3. Mobile AR

test pivot scene measured error predicted error

(cm) (m) (deg) (deg)
A 3.5 1 6 12
B 12.3 1 33 44
C 3.5 2 2 6

Table 3.2: Measured and estimated errors for real tests with a camera rotating
through a full circle about a pivot point offset from its optical center, in a nearby
scene. The error is the yaw value of the orientation (pitch and tilt were negligible)
when the camera is returned to the initial orientation.

through a full circle and the final error was measured. To determine the error, the

camera was first lined up with an alignment mark on the tripod before rotating,

and the rotation stopped when the alignment mark was reached again, resulting

in a final orientation that was as close as possible to the original orientation.

The computed orientation of the final camera pose was measured from Envisor,

which was then interpreted as the error (as the orientation should have been the

identity). This method gives a reasonable estimate of the orientation error. In

test A, the camera pivot offset was 3.5cm and the scene was 1m away. In test B,

the offset was 12.3cm in a 1m scene, and test C had a 3.5cm offset in a 2m scene.

Results can be seen in Table 3.2.

Aside from the fact that the translation error model over-predicts the error,

the measured errors are partially smaller than expected due to the difficulty in

ensuring that features are only chosen from near-scene objects. In portions of

the constructed scene, far field objects were partially visible and some features

116

Chapter 3. Mobile AR

ended up in those regions, meaning they did not exhibit the expected parallax

of the near field objects. This has the effect of lessening the measurement error

per-frame.

Image Noise

Noisy image data and motion blur both have the effect of randomly perturbing

the detected positions of each image feature. To simulate these effects, white

noise was added into feature positions before being input to different components

of the tracking. First, the absolute orientation computation was tested by itself,

followed by the full RANSAC / absolute orientation computation component (as

described in Section 3.5.2). The purpose of these two tests was first, to see how

the orientation computation itself degrades with noise, and second, to see how

integration with RANSAC affects this degradation. In each test, the camera was

first held stationary for 360 frames and then rotated by 360 1◦ increments in

the same synthetic scene as before (features on a 10m sphere at 5◦ pan and tilt

positions). The average error for each of these stages was measured versus the

amount of noise added.

Figure 3.30 shows how the absolute orientation computation performs with

increasing noise. The error increases roughly linearly with the magnitude of the

noise in the feature tracking. This is the expected behavior, as the orientation

117

Chapter 3. Mobile AR

0 1 2 3 4 5
Noise Standard Deviation (pixels)

0

0.05

0.1

0.15

0.2

0.25

E
rr

or
 (

de
gr

ee
s)

Stationary
Rotating

Figure 3.30: Average error in the computed absolute orientation during 1◦ ro-
tations versus pixel noise added in to feature positions.

computation generates the optimal rotation for the entire set of features, and

random noise in the input points will directly translate to random noise in the

output rotation. Because these errors are random, they will not systematically

affect the orientation estimate (as translation will), but they will cause it to drift

over time.

The second test evaluated RANSAC’s performance at finding a coherent esti-

mate in spite of increased image noise. Figure 3.31 shows the relationship, which

is again roughly linear, though with a much steeper slope in this case. The rea-

son why performance with RANSAC degrades faster is that since feature motion

does not match as closely, RANSAC is likely to find a subset of the features that

do move coherently (in some random direction) and use them exclusively for the

estimate. Therefore, in the case where increased image noise is expected, the

118

Chapter 3. Mobile AR

0.5 1 1.5 2
Noise Standard Deviation (pixels)

0

0.05

0.1

0.15

0.2

0.25

E
rr

or
 (

de
gr

ee
s)

Stationary
Rotating

Figure 3.31: Average error in the coherent RANSAC rotation estimate during
1◦ rotations versus pixel noise added in to feature positions, simulating the effect
of noisy or motion blurred images.

RANSAC match threshold should be adjusted to allow for the expected random

motion of features. Since in general the feature tracking provides subpixel accu-

racy, the default match threshold is set to the number of degrees spanned by one

pixel, which has performed well in my experiences.

Image noise also affects the reacquisition of landmark features, by increasing

the difference between the landmark’s stored SURF descriptor and the descriptors

of the candidate features during the reacquisition step. To quantify this effect, I

computed SURF descriptors for a set of points in an image multiple times with

varying amounts of noise added in to each pixel intensity. The difference between

the noisy descriptors versus the descriptors under ideal conditions were measured

and are presented in Figure 3.32. The similarity computed is the dot product of

two unit-length descriptors. As the results show, the similarity drops off linearly

119

Chapter 3. Mobile AR

0 2 4 6 8 10 12 14 16 18 20
Pixel Intensity Noise Standard Deviation

0

0.2

0.4

0.6

0.8

1

D
es

cr
ip

to
r

Si
m

ila
ri

ty

Figure 3.32: Average similarity of between original descriptors and descriptors
computed with different amounts of pixel intensity noise added, simulating the
effect of image noise on landmark reacquisition.

with increased image noise. Landmark reacquisition looks for a feature with a

descriptor that is similar above some threshold (set to 0.95 under normal condi-

tions). Therefore, in the case of increased expected image noise, the landmark

threshold should be lowered accordingly, to ensure that landmark descriptors can

still be reacquired.

Distractions

Large distractions that move in the image independently of the camera motion

(people, cars, etc.) can interfere with the orientation computation if they over-

whelm RANSAC’s ability to ignore outliers. To test the performance with large

distractions, significant coherent noise (standard deviation of 10 pixels, randomly

120

Chapter 3. Mobile AR

0 0.1 0.2 0.3 0.4 0.5 0.6
Outlier Ratio

0

0.25

0.5

0.75

1

E
rr

or
 (

de
gr

ee
s)

Stationary
Rotating

Figure 3.33: Average error in the measured rotation during 1◦ rotations versus
portion of features with significant coherent noise added, simulating the effect of
large distractions in the scene.

chosen per-frame) was added to a random portion of the features in each frame

before the coherent rotation computation step.

The results of this test can be seen in Figure 3.33. Up until a certain portion,

the effect of outliers is nearly negligible, but then the error increases dramati-

cally. This is the expected behavior for the RANSAC algorithm. Outliers can

be discarded without affecting the estimate, up until the point that there are so

many outliers that they appear to be another set of inliers. Once that threshold

is reached, it is likely that the RANSAC estimate will converge on the incorrect

set of coherent motion, causing total failure.

This possible failure mode will occur when a single object, such as a near-

standing person or a moving car, occludes most of the camera’s field of view.

More likely in dynamic scenes is that a large number of small distractions will

121

Chapter 3. Mobile AR

be present in the scene, each with their own motion. In this case, so long as the

portion of inlier features is still above the RANSAC threshold (currently set to

0.33), the correct estimate is still likely to be found, as other potential candidates

will be discarded since there will not be a consensus among the features. As the

RANSAC algorithm is probabilistic, there is always the possibility of failure –

this probability can be set as part of the RANSAC parameter tuning, to trade

likelihood of failure with performance. In general, we set the failure probability

to 0.01, which the RANSAC algorithm uses to determine the number of iterations

it executes before giving up. Given accurate estimates of all the RANSAC pa-

rameters (probability that a feature is an inlier and the number of inliers needed

to reach a consensus), the failure probability dictates how often RANSAC will

fail to find a consensus for good data. In reality, conservative estimates are used

for the RANSAC parameters, and so failure on good feature data is extremely

uncommon.

Insufficient Texture

The last failure mode is insufficient texture for feature tracking. This can

happen outdoors, for example, if the camera is pointed at a clear sky, or indoors

looking at an unadorned wall. In these cases, the tracking fails completely as

there is not enough information to compute orientation. More likely is that the

122

Chapter 3. Mobile AR

Full Right Top
Feature Distribution

0

0.025

0.05

E
rr

or
 (

de
gr

ee
s)

Stationary
Rotating

Figure 3.34: Average error in the measured rotation during 1◦ rotations versus
region of the image features are restricted to, simulating the effect of insufficient
texture creating lopsided feature distributions.

majority of the image is featureless, but there is some texture on one side that can

be tracked – for example, the camera is pointed above the top of a building, so the

top half of the image is featureless sky, while the bottom half is textured building.

This creates an asymmetric distribution of features in the image that has the

potential to systematically influence the orientation computation by including

coherent (due to its asymmetry around the image center) random noise in the

process.

To test the orientation computation performance under these conditions, we

used the same synthetic testing setup but only allowed features in the top or right

portions of the image (during a 360◦ panning motion). The measured rotations

in these cases were compared to the known rotation to see if the scenario created

a systematic error. Results are presented in Figure 3.34. While there is some

123

Chapter 3. Mobile AR

increased error for asymmetric feature configurations, the effect is exceedingly

small.

Error Analysis Summary

In practice, the largest overall source of error is from translation of the camera,

especially in the case of hand-held camera motion. Adequate illumination and

slow camera motion make image noise insignificant, and with a wide field of view

camera (50◦ or greater), lack of texture is rarely a problem. In crowded areas,

distractions can be a problem if there is not enough static imagery visible in each

frame.

Tracking error impacts the ability of the landmark features to correct for drift

in long acquisitions. Landmark reacquisition searches for features within a region

around the expected position of the landmark. The search region I use has a radius

of 15 pixels, which roughly corresponds to an error of 1◦. If the accumulated

tracking error is less than this region, then landmarks can be reacquired and

will correct the error, enabling long-term tracking without drift. If the expected

tracking error is greater, due to poor scene conditions, then the search radius

should be increased to ensure that landmarks can still be reacquired.

The impact of tracking error on the acquired environment maps is that it

creates visible discontinuities between frames that are spatially adjacent but not

124

Chapter 3. Mobile AR

temporally adjacent. In my experiments, registration errors on the order of 1◦ are

large enough to detract from quality. Therefore, the sources of error for a scene

need to be mitigated to the point that the total accumulated error is less than 1◦.

For indoor scenes, that level of accuracy requires the use of a tripod (or extremely

careful hand-held rotation). The RANSAC parameters need to be adjusted to

accommodate the expected levels of image noise and distractions. With these

considerations, we have been able to achieve sufficient accuracy for environment

acquisition in both indoor and outdoor scenes (see Figures 3.5.8 and 3.26).

3.6 Mobile AR Summary

The goal of Anywhere Augmentation is embodied in the techniques and appli-

cations developed within the ARagorn framework. The aerial annotation appli-

cation augments the standard wearable data sources with readily available aerial

photographs to aid the common task of annotation placement, easing content cre-

ation in a wearable context. The remote explorer application also allows the easy

creation of content by automatically creating a basic model of a remote environ-

ment from the tracked video stream. The GroundCam and panorama construction

techniques both extend the capabilities of ARagorn to operate more effectively in

new environments, assisting it with accurate tracking and online, automatic envi-

125

Chapter 3. Mobile AR

ronment acquisition. These two algorithms will prove useful for a wide variety of

both indoor and outdoor AR applications. Finally, using the environment maps

from the panorama constructor to illuminate virtual geometry with the surround-

ing physical scene demonstrates improved visual fidelity in an established AR

application domain. Each of these contributions provides the capabilities of ad-

vanced augmented reality technologies and exhibits the low setup cost and ease

of use associated with Anywhere Augmentation.

126

Chapter 4

Conclusions

To conclude this thesis, I will revisit the concept of Anywhere Augmentation and

view the completed work from that perspective. The goal of Anywhere Augmen-

tation is to achieve the highest level of quality in an AR application with the

minimum amount of setup work necessary by the end user. It is the traditionally

high startup costs that form a barrier to casual experimentation with AR tech-

nologies, hindering widespread acceptance of AR as a usable paradigm in day to

day actions. By focusing on faster setup, Anywhere Augmentation aims to bring

high quality AR applications to the average computer user.

In the arena of desktop AR, the ARWin system makes using AR interface

concepts on desktop computers quick and easy by using printed paper markers as

a tangible UI device. Starting to use the ARWin desktop simply requires printing

new markers, and the workspace can be moved with the user to a new office by

moving the computer and markers, with no additional setup required. Within

127

Chapter 4. Conclusions

ARWin, using the common illumination support is an improvement over previous

results – the user must assemble the tracked lightprobe, but once that step is

complete, fully dynamic illumination of virtual geometry is possible, and with the

same or lower quality scene model as other techniques, complex physical geometry

can be lit more accurately by virtual light sources. Finally, the image space error

correction technique automatically improves the visual quality of appropriate AR

applications, reducing the necessary level of tracking quality, adding more, easier

to setup tracking techniques to the Anywhere Augmentation toolbox.

For mobile AR, the ARagorn system does not require any custom hardware

or mounting assemblies and can easily be put together from standard AR com-

ponents. The first application presented in ARagorn, the aerial augmenter, uses

Anywhere Augmentation data sources to vastly simplify the creation of 3D an-

notations in large environments. The GroundCam offers significantly improved

position tracking to the ARagorn system with the addition of a second camera,

which, when combined with a standard GPS unit, yields high frequency absolute

position updates of improved quality over standard GPS alone. Using ARagorn

in my second application, the remote explorer, makes quick acquisition of simple

models of remote environments possible, and finally, adding the ability to con-

struct environment maps within this system online, by simply panning a camera

128

Chapter 4. Conclusions

around the scene with live, incremental feedback, is a much easier and user-friendly

task than previous panorama construction methods.

Overall, each of these techniques and applications successfully further the goals

of Anywhere Augmentation. While no single contribution is a silver bullet, to-

gether and with other AR techniques, they form a powerful set of tools for the

creation of easy to use, high quality AR applications.

4.1 Contributions

To summarize, the specific contributions of this thesis are

• a rapidly-deployable application window manager that makes use of an ex-

isting tracking solution for its tangible interface,

• a technique for common illumination between physical and virtual worlds in

dynamic environments,

• a post-processing filter to reduce the visual impact of registration errors for

impostor polygons.

• an application that uses commonly available aerial photographs as an addi-

tional data source for placement of 3D annotations,

129

Chapter 4. Conclusions

• a vision-based tracking modality and hybrid wide-area person-tracker with

improved performance,

• a remote exploration system that uses an instrumented scout to acquire

information about an environment for offline viewing, and

• an application that constructs environment maps online and uses them to

shade virtual geometry.

4.2 Future Work

Anywhere Augmentation is a wide and challenging area within the Augmented

Reality field, and there are many avenues along which this work can be continued.

Most interesting to me is the idea to extend the panorama construction techniques

into an automatic world building system that outputs a hybrid light map and

geometry representation of the captured environment. The hybrid model could

then be used for the realistic visualization of virtual geometry in the physical

scene. This proposed contribution is outlined here as a potential direction for

future work.

130

Chapter 4. Conclusions

4.2.1 Hybrid Light Map and Geometry

Based on the results of the panorama construction, the next goal would be to

extend the data stored at individual locations to include some positional infor-

mation as well, resulting in a hybrid lighting and geometry dataset that can be

explored and used in more interesting ways than just environment maps. To do

this in a feasible fashion, rather than construct complete 3D geometry for arbitrary

scenes and arbitrary camera motion, which is exceedingly complex, the technique

can take advantage of the scout’s behavior which is to move directly between dis-

crete locations. This way the tracked video stream will show the scene geometry

along a single direction gradually coming closer – in image space, this motion

presents itself as gradual increase in scale and the motion of features away from

the center of the image, proportionally to their distance from the camera. It is

this proportional motion parallax that can be exploited for geometry information.

There is a significant amount of research dealing with the acquisition of image-

based scene models. Plenoptic modeling [65] is a technique to make models from

panoramas at different locations. The Lumigraph [42] and lightfield rendering [58]

extend the idea to create a full representation of 4D light fields for rendering novel

views. These techniques produce very nice results, but the size of datasets and

complexity of algorithms make them inappropriate for online modeling in a wear-

able system. Shum et al.’s [99] and Chai et al.’s [17] work on concentric mosaics

131

Chapter 4. Conclusions

and their applications is an image based approach that is more appealing in terms

of computational and storage complexity, but it requires unusual camera sweeps

that limits its flexibility to handle the sort of behavior an exploring scout will

exhibit. Other research has been done on world modeling that involves significant

amounts of user input, including Shum et al.’s panorama markup [96], and Román

et al.’s multiperspective images [88], but for Anywhere Augmentation, fully au-

tomatic construction is desirable. The Photo Tourism project [101] generates 3D

point clouds fully automatically, but runs offline. Davison’s single camera SLAM

[25] also generates point clouds, in realtime. Unfortunately, point clouds are too

sparse a representation for the world model – a dense representation is needed

for effects such as lighting and environment mapping. Other groups have built

dense world models automatically, such as Uyttendaele et al. [110] and Teller

et al. [107], but their approaches require significant expensive hardware rigs that

acquire very large amounts of data, which is then processed offline for high quality

results. Finally, Tour Into the Video [53] is a very different approach, creating

a stylized world model that combines image-based and model-based approaches

that would work well for my proposed technique. However, it does require user

input and offline processing, and is somewhat limited in terms of how large a scene

it can represent.

132

Chapter 4. Conclusions

I envision a novel means of acquiring and modeling an outdoor environment

in realtime, fully automatically. The first implementation can construct cylinders

(with hemispherical end caps) of image data along a path - the rough equivalent

of a spherical environment map stretched to encompass a linear path instead of a

point location. The texture map representing the environment around the user’s

path can be a set of four rectangles running the length of the path (a stretched

cube map), with squares on either end. This texture will be mapped onto a

cylinder of triangles, extended as the user continues to walk forward. Specifically,

the cylinder will be made of concentric rings of triangles, and the width of the last

ring will increase until a threshold is reached, at which point it will be replaced by

two rings. After splitting, only the second ring will be stretched, until the same

threshold is reached and it is split itself. This way the majority of the geometry

is static – only the last ring will be updated at each step. As additional rings of

geometry are added, the texture map can be extended as well. See Figure 4.1 for

an example of the geometry.

Applying the video texture to the geometry will be similar to the approach

for panorama construction. The same method of feature tracking will be used.

An initial implementation can focus on background image data, so the good fea-

tures can be determined based on the observation that their apparent depth is

further away than some maximum threshold, at which point they are assumed

133

Chapter 4. Conclusions

Figure 4.1: Example constructed geometry for a linear segment of a user’s path.
The dark line is the user’s path. The geometry surrounding it is completely
triangulated, but triangles are omitted for clarity.

to be “at infinity”. Computing depth of features, or more specifically 3D posi-

tion estimates, is a matter of triangulation of the feature positions over multiple

frames of camera translation. Other tracking techniques such as the GroundCam

will provide translation information, so a 3D position estimate can be computed

by finding the point of best fit of a series of rays cast from consecutive camera

positions. This best fit point will be a Gaussian estimate of the actual location,

with standard deviation computed from the error in triangulation. Further cast

rays can be used to refine this position and error estimate until the point is either

found within some error tolerance or determined to be bad (too large error) and

discarded. Points that are far enough away as to be outside a distance threshold

separating foreground and background objects, will be considered to be at infinity.

With this information, good patches of background image texture can be found

which can then be projected onto the surrounding geometry and written into the

134

Chapter 4. Conclusions

Figure 4.2: An example of geometry creation based on computed depth of fea-
tures. From the user’s position along the path (the dark line), tracked features
correspond to cast rays in the user’s field of view. These rays end at the computed
depth of the objects they track. The dotted lines show the distance threshold for
infinity. The red lines show the modified wall geometry and the pop-up polygons
generated for foreground objects.

world texture map. Gaps can be filled using the same algorithm as the panorama

construction.

Rendering with this simple world model will not convincingly recreate the

sensation of moving along the path between locations, as parallax and foreground

objects will be absent. This approach could be extended into a more accurate

approximation, by denting the tube geometry to represent real measured depths,

and adding pop-up geometry for foreground objects (see Figure 4.2). First, mod-

ifying the shape of the basic tube geometry is a matter of taking the computed

background depths and using them to displace vertices near the feature location.

135

Chapter 4. Conclusions

Features and tube geometry will not match up exactly, so the sparse depths from

features will be used to smoothly interpolate the distances of the tube vertices.

Second, handling foreground objects is a more complex issue. Features are deter-

mined to be part of the foreground when they exhibit a large depth discontinuity

with adjacent features. Once a foreground feature has been identified, the fore-

ground image data must be segmented from the background. One approach is to

find the min-cost cut of a Delaunay triangulation of the good features (assuming

a sufficient number of tracked features), where cost is based on the depth dis-

continuity of edges. The boundary of the cut is then found by the cut edges’

duals in the equivalent Voronoi diagram. This boundary can be refined by using

color segmentation within the boundary region based on the colors surrounding

the foreground feature, to get a per-pixel mask. Alternately, color segmentation

could be used instead of the boundary selection by using the color model to drive

a flood fill (similar to how Adobe Photoshop’s Magic Wand tool works). Either

way, once the foreground object is selected, a polygon can be added to the world

model at the correct location, facing the user’s current position, with the selected

foreground texture applied. This polygon does not necessarily need to be attached

to the surrounding environment model. Rendering of these foreground pop-up ob-

jects could be as static geometry, or as billboards oriented to face the user. The

polygons could also show the same texture on either side, or could be blank or

136

Chapter 4. Conclusions

filled in with the inpainting algorithm on the back side – user experience can guide

what is most appropriate here.

4.2.2 Realistic Outdoor Visualization

The result of the world building approach will be a hybrid geometry and light

map structure ideal for applications that need this information to render realis-

tic virtual geometry using the physical lighting environment. These applications

are often used to visualize archaeological ruins [111] or proposed architectural ad-

ditions [108], creating medium to large scale representations of landscaping and

buildings. The goal then is an application that uses the environment map / world

model generated by the scout and the common illumination techniques devel-

oped in the desktop AR domain to create better integrated virtual geometry by

rendering it with realistic shading from the physical environment.

To accomplish this, filtered material response maps can be created in a similar

manner as used in my previous desktop AR common illumination work, except

that the environment map will be constructed by projecting the world model to

the position of the virtual geometry. This map will then be filtered as before and

applied to the geometry with standard OpenGL environment mapping techniques.

137

Chapter 4. Conclusions

4.3 Closing Remarks

The result of this work is an advance in the state of Anywhere Augmentation

and the capabilities of AR systems in new environments. Future research in

this area must continue to strive to achieve the same high quality of traditional

AR applications while simultaneously reducing or eliminating the upfront costs

normally required. Full online world model acquisition is the next big challenge

in the field, which will then open up even more exciting application possibilities

for casual AR users.

138

Bibliography

[1] 360 panorama professional, 2007. http://www.360dof.com/.

[2] 3DVista stitcher, 2007. http://www.3dvista.com/.

[3] ADG panorama tools, 2007. http://www.albatrossdesign.com/.

[4] K. Agusanto, L. Li, Z. Chuangui, and N. Sing. Photorealistic rendering for
augmented reality using environment illumination. In Proceedings of the

International Symposium on Mixed and Augmented Reality, 2003.

[5] ArcSoft Panorama Maker, 2007. http://www.arcsoft.com/.

[6] M. Ashikhmin and A. Ghosh. Simple blurry reflections with environment
maps. Journal of Graphics Tools, 7(4), 2002.

[7] Autopano, 2007. http://www.autopano.net/.

[8] R. Azuma. Predictive Tracking for Augmented Reality. PhD thesis, Univer-
sity of North Carolina at Chapel Hill, 1995.

[9] Y. Baillot, D. Brown, and S. Julier. Authoring of physical models using mo-
bile computers. In Proceedings of the International Symposium on Wearable

Computers, 2001.

[10] P. Baudisch, D. Tan, D. Steedly, E. Rudolph, M. Uyttendaele, C. Pal, and
R. Szeliski. Panoramic viewfinder: providing a real-time preview to help
users avoid flaws in panoramic pictures. In Proceedings of the Conference of

the Computer-Human Interaction Special Interest group of Australia, 2005.

[11] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features.
In Proceedings of the European Conference on Computer Vision, 2006.

[12] R. Behringer. Registration for outdoor augmented reality applications using
computer vision techniques and hybrid sensors. In Proceedings of Virtual

Reality, 1999.

139

Bibliography

[13] M. Bertalmio, L. Vese, G. Sapiro, and S. Osher. Simultaneous structure and
texture image inpainting. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, 2003.

[14] M. Brown and D. Lowe. Recognising panoramas. In Proceedings of the

International Conference on Computer Vision, 2003.

[15] J. Canny. A computational approach to edge detection. Transactions on

Pattern Analysis and Machine Intelligence, 8(6), 1986.

[16] D. Capel and A. Zisserman. Automated mosaicing with super-resolution
zoom. In Proceedings of the Conference on Computer Vision and Patter

Recognition, 1998.

[17] J. Chai, S. Kang, and H. Shum. Rendering with non-uniform approximate
concentric mosaics. In Proceedings of the Workshop on 3D Structure from

Multiple Images of Large-Scale Environments, 2001.

[18] S. Chen. QuickTime VR: an image-based approach to virtual environment
navigation. In Proceedings of SIGGRAPH, 1995.

[19] E. Coelho, B. MacIntyre, and S. Julier. OSGAR: A scene graph with uncer-
tain transformations. In International Symposium on Mixed and Augmented

Reality, 2004.

[20] J. Coleshill and A. Ferworn. Spherical panoramic video – the space ball. In
Proceedings of the International Conference on Computational Science and

its Applications, 2003.

[21] A. Comport, E. Marchand, and F. Chaumette. A real-time tracker for mark-
erless augmented reality. In Proceedings of the International Symposium on

Mixed and Augmented Reality, 2003.

[22] S. Coorg and S. Teller. Spherical mosaics with quaternions and dense cor-
relation. International Journal of Computer Vision, 37(3), 2000.

[23] A. Criminisi, P. Perez, and K. Toyama. Region filling and object removal by
exemplar-based image inpainting. Transaction on Image Processing, 13(9),
2004.

[24] D Joiner, 2007. http://www.d-vw.com/.

140

Bibliography

[25] A. Davison. Real-time simultaneous localisation and mapping with a single
camera. In Proceedings of the International Conference on Computer Vision,
2003.

[26] P. Debevec. Rendering synthetic objects into real scenes: Bridging tradi-
tional and image-based graphics with global illumination and high dynamic
range photography. In Proceedings of SIGGRAPH, 1998.

[27] S. DiVerdi and T. Höllerer. Combining dynamic physical and virtual illu-
mination in augmented reality. Technical report, University of California,
Santa Barabara, 2004. UCSB//CSD-04-28.

[28] S. DiVerdi and T. Höllerer. Image-space correction of AR registration errors
using graphics hardware. In Proceedings of Virtual Reality, 2006.

[29] S. DiVerdi and T. Höllerer. GroundCam: A tracking modality for mobile
mixed reality. In Proceedings of Virtual Reality, 2007.

[30] S. DiVerdi, T. Höllerer, and R. Schreyer. Level of detail interfaces. In Pro-

ceedings of the International Symposium on Mixed and Augmented Reality,
2004.

[31] S. DiVerdi, D. Nurmi, and T. Höllerer. ARWin - a desktop augmented
reality window manager. In Proceedings of the International Symposium on

Mixed and Augmented Reality, 2003.

[32] S. DiVerdi, D. Nurmi, and T. Höllerer. A framework for generic inter-
application interaction for 3D AR environments. In Proceedings of the In-

ternational Augmented Reality Toolkit Workshop, 2003.

[33] L. Fang, P. Antsaklis, L. Montestruque, M. McMickell, M. Lemmon, Y. Sun,
H. Fang, I. Koutroulis, M. Haenggi, M. Xie, and X. Xie. Design of a wire-
less assisted pedestrian dead reckoning system - the NavMote experience.
Transactions on Instrumentation and Measurement, 54(6), 2005.

[34] M. Fischler and R. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartogra-
phy. Communications of the ACM, 24(6), 1981.

[35] M. Fleck. Perspective projection: the wrong imaging model. Technical
report, University of Iowa, 1995. TR 95-01 Computer Science.

141

Bibliography

[36] A. Fournier, A. Gunawan, and C. Romanzin. Common illumination be-
tween real and computer generated scenes. In Proceedings of Graphics and

Interface, 1993.

[37] E. Foxlin. Inertial head-tracker sensor fusion by a complementary separate-
bias Kalman filter. In Proceedings of the Virtual Reality Annual Interna-

tional Symposium, 1996.

[38] E. Foxlin and L. Naimark. VIS-tracker: a wearable vision-inertial self-
tracker. In Proceedings of Virtual Reality, 2003.

[39] J. Fung and S. Mann. Using multiple graphics cards as a general purpose
parallel computer : Applications to computer vision. volume 1, 2004.

[40] S. Gibson and A. Murta. Interactive rendering with real-world illumination.
In Proceedings of Eurographics Workshop on Rendering, 2000.

[41] Google maps, 2006. http://maps.google.com/.

[42] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The Lumigraph. In
Proceedings of SIGGRAPH, 1996.

[43] X. Gu. GPU-based conformal flow on surfaces. Technical report, State
University of New York at Stony Brook, 2006. Computer Science.

[44] M. Hansen, P. Anandan, K. Dana, G. van der Wal, and P. Burt. Real-time
scene stabilization and mosaic construction. In Proceedings of the Workshop

on Applications of Computer Vision, 1994.

[45] T. Höllerer and C. Coffin. INVITE: 3D-augmented interactive video tele-
conferencing. In Proceedings of the Pervasive 2006 International Workshop

on the Tangible Space Initiative, 2006.

[46] T. Höllerer and S. Feiner. Mobile augmented reality. In H. Karimi and
A. Hammad, editors, Telegeoinformatics: Location-Based Computing and

Services. Taylor and Francis Books Ltd., 2004.

[47] T. Höllerer, J. Wither, and S. DiVerdi. Location Based Services and TeleCar-

tography, chapter Anywhere Augmentation: Towards Mobile Augmented
Reality in Unprepared Environments. Lecture Notes in Geoinformation and
Cartography. Springer, 2007.

[48] B. Horn. Closed-form solution of absolute orientation using unit quaternions.
Journal of the Optical Society of America, 4, 1987.

142

Bibliography

[49] S. Hsu, H. Sawhney, and R. Kumar. Automated mosaics via topology in-
ference. Computer Graphics and Applications, 22(2), 2002.

[50] M. Imura, Y. Yasumuro, Y. Manabe, and K. Chihara. Fountain designer:
Control virtual water as you like. In Proceedings of the International Sym-

posium on Mixed and Augmented Reality, 2006. Demo.

[51] Kaidan 360 OneVR, 2007. http://www.kaidan.com/.

[52] M. Kalkusch, T. Lidy, M. Knapp, G. Reitmayr, H. Kaufmann, and
D. Schmalstieg. Structured visual markers for indoor pathfinding. In Pro-

ceedings of the International Augmented Reality Toolkit Workshop, 2002.

[53] H. Kang and S. Shin. Tour into the video: image-based navigation scheme
for video sequences of dynamic scenes. In Proceedings of the Symposium on

Virtual Reality Software and Technology, 2002.

[54] S. Kim, E. Chang, C. Ahn, and W. Woo. Image-based panoramic 3D virtual
environment using rotating two multi-view cameras. In Proceedings of the

International Conference on Image Processing, 2003.

[55] G. Klein and T. Drummond. Sensor fusion and occlusion refinement for
tablet-based AR. In Proceedings of the International Symposium on Mixed

and Augmented Reality, 2004.

[56] D. Koller, G. Klinker, E. Rose, D. Breen, R. Whitaker, and M. Tuceryan.
Real-time Vision-Based camera tracking for augmented reality applications.
In Proceedings of the Symposium on Virtual Reality Software and Technol-

ogy, 1997.

[57] A. Kropp, N. Master, and S. Teller. Acquiring and rendering high-resolution
spherical mosaics. In Proceedings of the Workshop on Omnidirectional Vi-

sion, 2000.

[58] M. Levoy and P. Hanrahan. Light field rendering. In Proceedings of SIG-

GRAPH, 1996.

[59] LM Stitch, 2007. http://www.lostmarble.com/.

[60] C. Loscos, G. Drettakis, and L. Robert. Interactive virtual relighting of real
scenes. Transactions on Visualization and Computer Graphics, 6(4), 2000.

[61] D. Lowe. Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 20, 2003.

143

Bibliography

[62] B. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In Proceedings of the International Joint

Conference on Artificial Intelligence, 1981.

[63] B. MacIntyre and E. Coelho. Adapting to dynamic registration errors using
level of error (LOE) filtering. In International Symposium on Augmented

Reality, 2000.

[64] S. Mann and R. Picard. Video orbits of the projective group: a new per-
spective on image mosaicing. Technical Report 338, MIT Technical Report,
1995.

[65] L. McMillan and G. Bishop. Plenoptic modeling: an image-based rendering
system. In SIGGRAPH ’95: Proceedings of the 22nd annual conference on

Computer graphics and interactive techniques, 1995.

[66] J. Montiel and A. Davison. A visual compass based on SLAM. In Proceedings

of the International Conference on Robotics and Automation, 2006.

[67] Myst, 1995. Cyan Worlds, http://www.cyanworlds.com/.

[68] S. Nayar. Omnidirectional video camera. In Proceedings of the Image Un-

derstanding Workshop, 1997.

[69] M. Oliveira, B. Bowen, R. McKenna, and Y. Chang. Fast digital image
inpainting. In Proceedings of the Conference on Visualization, Imaging, and

Image Processing, 2001.

[70] Open source computer vision library reference manual, December 2000. Intel
Corporation.

[71] PanaVue ImageAssembler, 2007. http://www.panavue.com/.

[72] Panorama factory, 2007. http://www.panoramafactory.com/.

[73] PanoStitcher, 2007. http://www.pixtra.com/.

[74] PanoWeaver, 2007. http://www.easypano.com/.

[75] S. Peleg and J. Herman. Panoramic mosaics by manifold projection. In
Proceedings of the Conference on Computer Vision and Pattern Recognition,
1997.

144

Bibliography

[76] S. Peleg, B. Rousso, A. Rav-Acha, and A. Zomet. Mosaicing on adap-
tive manifolds. Transactions on Pattern Analysis and Machine Intelligence,
22(10), 2000.

[77] Photoshop elements, 2007. http://www.adobe.com/.

[78] PhotoVista Panorama, 2007. http://www.iseephotovista.com/.

[79] W. Piekarski and B. Thomas. Augmented reality working planes: A foun-
dation for action and construction at a distance. In Proceedings of the

International Symposium on Mixed and Augmented Reality, 2004.

[80] I. Poupyrev, D. Tan, M. Billinghurst, H. Kato, H. Regenbrecht, and N. Tet-
sutani. Developing a generic augmented-reality interface. Computer, 35(3),
2002.

[81] N. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket location-
support system. In Proceedings of the International Conference on Mobile

Computing and Networking, 2000.

[82] Project Looking Glass, 2006. Sun Microsystems, http://www.sun.com/soft-
ware/looking glass/.

[83] Quicktime vr, 2007. Apple, http://www.apple.com/quicktime/tech-
nologies/qtvr/.

[84] RealViz stitcher, 2007. http://stitcher.realviz.com/.

[85] K. Rehman. Visualisation, interpretation and use of location-aware inter-
faces. Technical report, University of Cambridge, Computer Laboratory,
2005. UCAM-CL-TR-634.

[86] G. Reitmayr and T. Drummond. Going out: Robust model-based tracking
for outdoor augmented reality. In Proceedings of the International Sympo-

sium on Mixed and Augmented Reality, 2006.

[87] G. Robertson, M. Dantzich, D. Robbins, M. Czerwinski, K. Hinckley, K. Ris-
den, D. Thiel, and V. Gorokhovsky. The Task Gallery: A 3D window man-
ager. In Proceedings of the Conference on Human Factors in Software, 2000.

[88] A. Roman, G. Garg, and M. Levoy. Interactive design of multi-perspective
images for visualizing urban landscapes. In Proceedings of the Conference

on Visualization, 2004.

145

Bibliography

[89] B. Rousso, S. Peleg, I. Finci, and A. Rav-Acha. Universal mosaicing using
pipe projection. In Proceedings of the International Conference on Computer

Vision, 1998.

[90] K. Satoh, M. Anabuki, H. Yamamoto, and H. Tamura. A hybrid registration
method for outdoor augmented reality. In Proceedings of the International

Symposium on Augmented Reality, 2001.

[91] H. Sawhney, S. Hsu, and R. Kumar. Robust video mosaicing through topol-
ogy inference and local to global alignment. Lecture Notes in Computer

Science, 1407, 1998.

[92] H. Sawhney, R. Kumar, G. Gendel, J. Bergen, D. Dixon, and V. Paragano.
VideoBrushTM: Experiences with consumer video mosaicing. In Proceedings

of the Workshop on Applications of Computer Vision, 1998.

[93] D. Schmalstieg, A. Fuhrmann, and G. Hesina. Bridging multiple user in-
terface dimensions with augmented reality. In International Symposium on

Augmented Reality, 2000.

[94] C. Shen, H. Shum, and J. O’Brien. Image based rendering and illumination
using spherical mosaics. In Proceedings of SIGGRAPH Technical Sketches,
2001.

[95] J. Shi and C. Tomasi. Good features to track. In Proceedings of the Con-

ference on Computer Vision and Pattern Recognition, 1994.

[96] H. Shum, M. Han, and R. Szeliski. Interactive construction of 3D models
from panoramic mosaics. In Proceedings of the Conference on Computer

Vision and Pattern Recognition, 1998.

[97] H. Shum and L. He. Rendering with concentric mosaics. In Proceedings of

SIGGRAPH, 1999.

[98] H. Shum, K. Ng, and S. Chan. Virtual reality using the concentric mo-
saic: construction,rendering and data compression. In Proceedings of Image

Processing, 2000.

[99] H. Shum, K. Ng, and S. Chan. A virtual reality system using the concentric
mosaic: construction, rendering, and data compression. Transactions on

Multimedia, 7(1), 2005.

[100] H. Shum and R. Szeliski. Panoramic image mosaics. Technical Report
MSR-TR-97-23, Microsoft Research, 1997.

146

Bibliography

[101] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: exploring photo col-
lections in 3D. Transactions on Graphics, 25(3), 2006.

[102] D. Steedly, C. Pal, and R. Szeliski. Efficiently registering video into
panoramic mosaics. In Proceedings of the International Conference on Com-

puter Vision, 2005.

[103] Stitch FishEye Pro, 2007. http://www.stitch-fisheye.com/.

[104] N. Sugano, H. Kato, and K. Tachibana. The effects of shadow representation
of virtual objects in augmented reality. In Proceedings of the International

Symposium on Mixed and Augmented Reality, 2003.

[105] R. Szeliski. Video mosaics for virtual environments. Computer Graphics

and Applications, 16(2), 1996.

[106] R. Szeliski and H. Shum. Creating full view panoramic image mosaics and
environment maps. In Proceedings of SIGGRAPH, 1997.

[107] S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg, M. Jethwa, and
N. Master. Calibrated, registered images of an extended urban area. Inter-

national Journal of Computer Vision, 53(1), 2003.

[108] B. Thomas, W. Piekarski, and B. Gunther. Using augmented reality to
visualise architecture designs in an outdoor environment, 1999.

[109] Ulead Cool 360, 2007. http://www.ulead.com/.

[110] M. Uyttendaele, A. Criminisi, S. Kang, S. Winder, R. Szeliski, and R. Hart-
ley. Image-based interactive exploration of real-world environments. Com-

puter Graphics and Applications, 24(3), 2004.

[111] V. Vlahakis, N. Ioannidis, J. Karigiannis, M. Tsotros, M. Gounaris,
D. Stricker, T. Gleue, P. Daehne, and L. Almeida. Archeoguide: An aug-
mented reality guide for archaeological sites. Computer Graphics and Ap-

plications, 22(5), 2002.

[112] VRstitcher fisheye, 2007. http://www.360dof.com/.

[113] G. Welch and G. Bishop. An introduction to the Kalman filter. Proceedings

of SIGGRAPH Course Notes, 2001. Course 8.

147

Bibliography

[114] J. Wither, S. DiVerdi, and T. Höllerer. Using aerial photographs for im-
proved mobile AR annotation. In Proceedings of the International Sympo-

sium on Mixed and Augmented Reality, 2006.

[115] J. Wither and T. Höllerer. Pictorial depth cues for outdoor augmented real-
ity. In Proceedings of the International Symposium on Wearable Computers,
2005.

[116] Yahoo maps, 2006. http://maps.yahoo.com/.

[117] S. You and U. Neumann. Fusion of vision and gyro tracking for robust
augmented reality registration. In Proceedings of Virtual Reality, 2001.

[118] Z. Zhang. A flexible new technique for camera calibration. Transactions on

Pattern Analysis and Machine Intelligence, 22(11), 2000.

[119] Z. Zhu, G. Xu, and X. Lin. Constructing 3D natural scene from video se-
quences with vibrated motions. In Proceedings of the Virtual Reality Annual

International Symposium, 1998.

[120] Z. Zhu, G. Xu, E. Riseman, and A. Hanson. Fast generation of dynamic
and multi-resolution 360-degree panorama from video sequences. In Proceed-

ings of the International Conference on Multimedia Computing and Systems,
1999.

148

