Available Technologies

Find technologies available for licensing from UCLA.

No technologies match these criteria.
Schedule UC TechAlerts to receive an email when technologies are published that match this search. Click on the Save Search link above

Flexible And Stretchable Interconnects For Flexible Systems And Flextrate(Tm)

Researchers led by Professor Subramanian Iyer from the Department of Electrical Engineering at UCLA have developed a novel fabrication technique to create stretchable electronics.

High Performance Thin Films from Solution Processible Two-Dimensional Nanoplates

UCLA researchers in the departments of Chemistry and Materials Science have recently developed a novel material for use in flexible, printed electronics.

High Thermal Conductivity Boron Arsenide For Thermal Management, Electronics, And Photonics Applications

UCLA researchers in the Department of Mechanical & Aerospace Engineering have developed a novel boron arsenide (BAs) material that has an ultra-high thermal conductivity of 1300 W/mK and low cost of synthesis and processing.

A Wearable Freestanding Electrochemical Sensing System

Researchers in the UCLA Department of Electrical and Computer Engineering have developed a strategy for high-fidelity, wearable biomarker data acquisition and sensor integration with consumer electronics.

High Efficiency Organic Light Emitting Diodes

Brief description not available

Diamond On Nanopatterned Substrates

UCLA researchers in the Department of Materials Science and Engineering have developed a nanofabrication method for improving the thermal properties of polycrystalline diamond films grown by chemical vapor deposition.

Nanostructured Polymer Electrodes

Professor Kaner and colleagues at UCLA and Caltech have developed novel electrode structures for use in the storage of ions made with novel nanostructured polymer films. This technology takes advantage of a new class of nanofiber conjugate polymer materials to form amphoteric electrodes that demonstrate improved cycling properties and remarkable application flexibility.  

Flexible Nanotube Transistors

Professor Grüner and colleagues have developed films of nanostructures that can be integrated into flexible semiconducting substrates. This technology has applications in flexible displays, wearable electronics, intelligent paper, and other lightweight, low-cost electronics. 

Photo-induced Metal Printing Technique for Creating Metal Patterns and Structures Under Room Temperature

UCLA researchers in the Department of Materials Science and Engineering have developed a low-temperature metal patterning technique.

Multiple-Patterning Nanosphere Lithography

Researchers led by Paul Weiss from the Department of Chemistry and Biochemistry at UCLA have developed a novel technique that solves the scalability issue in the fabrication of three-dimensional nanostructures.

Concentration Of Nanoparticles By Zone Heating Method

UCLA researchers in the Department of Mechanical and Aerospace Engineering have invented a novel method to concentrate nanoparticles (NPs) into metal crystals via zone melting.

Scalable Manufacturing of Copper Nanocomposites with Tunable Properties

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a cost-effective method to produce copper-based nanocomposites with excellent mechanical, electrical and thermal properties.

Conjugated Polymers with Selenium Substituted Diketopyrrolopyrrole Unit for Electronics Devices

Organic photovoltaic devices provide an opportunity to utilize solar energy efficiently and at low cost. To harvest a greater spectrum of light, scientists have sought to reduce the energy bandgap of the active material. UCLA researchers have developed a novel low-bandgap polymer that provides excellent photovoltaic performance in single junction devices (PCE >7%). This technology has application to organic solar cells, tandem solar cells, transparent solar cells, field-effect transistors, near infrared (NIR) organic photo-detectors, and NIR organic light emitting diodes, among others.

Tunable Thz Generation In Chip-Scale Graphene

UCLA researchers in the Department of Electrical Engineering have developed a novel tunable and efficient terahertz (THz) plasmon generation on-chip via graphene monolayers.

Evaporation-Based Method For Manufacturing And Recycling Of Metal Matrix Nanocomposites

UCLA researchers in the Department of Mechanical and Aerospace Engineering have developed a new method to manufacture and recycle metal matrix nanocomposites.

Vertical Heterostructures for Transistors, Photodetectors, and Photovoltaic Devices

The Duan group at UCLA has developed a high current density vertical field-effect transistor (VFET) that benefits from the strengths of the incorporated layered materials yet addresses the band gap problem found in current graphene technologies.

A Battery-Less Wirelessly Powered Frequency-Swept Spectroscopy Sensor

UCLA researchers in the Department of Electrical and Computer Engineering have developed a wirelessly powered frequency-swept spectroscopy sensor.

Efficient and Stable Perovskite Solar Cells with All Solution Processed Metal Oxide Transporting Layers

UCLA researchers in the Department of Materials Science and Engineering have developed a novel lead halide perovskite solar cell with a metal oxide charge transport layer.

Controlling Magnetization Using Patterned Electrodes on Piezoelectrics

UCLA researchers in the Department of Materials Science and Engineering have developed a novel piezoelectric thin film that can control magnetic properties of individual magnetic islands.

Voltage-Responsive Coating for Lithium-Sulfur Battery

Researchers in the UCLA Department of Chemical and Biomolecular Engineering have developed a lithium-sulfur battery that overcomes the poor recharging and short lifespan problems common among other lithium-sulfur battery configurations.

A Highly-Efficient Near-Field Wireless Power Transfer System That Is Immune To Distance And/Or Coupling-Coefficient Variations

UCLA researchers in the Department of Electrical Engineering have developed a novel design for a wireless power transfer system. This new design is optimized to function stably over a greater and variable distance than current systems and to function with a higher efficiency.

Two-Step Processing With Vapor Treatment Of Thin Films Of Organic-Inorganic Perovskite Materials

Prof. Yang and colleagues have developed a novel method of preparing organic-inorganic thin films using a solution process followed by vapor treatment, presenting a low-cost, high-performance solution method of producing optoelectronic devices.

Intelligent Flexible Spinal Cord Stimulators For Pain And Trauma Management Through Neuromodulation

UCLA researchers in the Department of Neurosurgery and Electrical Engineering have developed a novel closed-loop spinal cord stimulator device that is small and flexible.

  • Go to Page: