Browse Category: Research Tools > Antibodies

[Search within category]

Anti-Human SULF2 monoclonal antibodies for research applications

Sulfatase 2 (SULF2) is an extracellular sulfatase that acts on heparan sulfate proteoglycans.  It is overexpressed and pro-oncogenic in many cancers. Its overexpression in the liver is linked to dyslipidemia and fatty liver disease. This invention describes a panel of monoclonal antibodies that are validated for immunocytochemical staining, biochemical analysis and functional studies of human SULF2.   

Kelch Like Family Member 11 (Klhl11) Autoantibodies As Markers Of Seminoma Associated Paraneoplastic Encephalitis In Men

Researchers at UCSF and Chan Zuckerberg Biohub have discovered a novel biomarker for an autoimmune disease that affects patients with testicular cancer.  The disease, known as “testicular cancer-associated paraneoplastic encephalitis,” can cause severe neurological symptoms.  The symptoms include loss of limb control, eye movement, and in some cases, speech.  The disease begins with testicular cancer, which in some cases causes the immune system to attack the brain.  Affected patients are often misdiagnosed and appropriate treatment is delayed. 

Methods And Reagents For Live Biopsy

This invention identifies a set of antibodies that allow direct imaging of immune cells in a tumor biospecimen.

Novel ELISA assay to detect SULF2 in patient samples

This ELISA technique detects Sulfatase2 (SULF2), an extracellular heparan sulfate-degrading enzyme that is overexpressed in many cancers. Furthermore, this technique can potentially serve as a diagnostic for cirrhosis.

Efficient Selection of Antibodies Specific to Target Extracellular Proteins

This invention enables the direct selection of membrane proteins in their native state, thereby facilitating the production of highly specific antibodies.

Novel Biomarkers for Autoimmune-mediated Lung Disease

Interstitial lung disease (ILD) is a common manifestation of systemic autoimmune diseases such as rheumatoid arthritis (RA), lupus and scleroderma, which can lead to inflammation and scarring of the lung and, consequently, to hypoxemia, pulmonary hypertension and death.  It is estimated that ILD occurs in approximately 15 percent of patients with RA.  Very little is known about how ILD disorders arise and what role loss of immune tolerance plays in ILD development.  Presently, there are no validated lung-specific autoantigens for diagnosis of autoimmune-mediated lung disease.  Current options for ILD treatment are limited to powerful immunosuppressive medications with significant side effects.  Identification of novel pulmonary biomarkers is sorely needed to develop better diagnostic methods and therapies for ILD.

  • Go to Page: